{ "cells": [ { "cell_type": "markdown", "id": "8b420745", "metadata": {}, "source": [ "(lecture14:covariance)=\n", "# Covariance between two random variables\n", "\n", "The concept of covariance summarizes with a single number how two random variables $X$ and $Y$ vary together.\n", "And there are three possibilities:\n", "\n", "- if $X$ is increased, then $Y$ will likely increase,\n", "- if $Y$ is decreased, then $Y$ will likely decrease, and\n", "- $X$ and $Y$ are not linked.\n", "\n", "Before defining these concepts exactly, let's load the smart buildings dataset which will help us demonstrate the concept.\n", "Here we go:" ] }, { "cell_type": "code", "execution_count": 9, "id": "b1333a54", "metadata": { "tags": [ "hide-input", "hide-output" ] }, "outputs": [], "source": [ "import matplotlib.pyplot as plt\n", "%matplotlib inline\n", "import seaborn as sns\n", "sns.set(rc={\"figure.dpi\":100, 'savefig.dpi':300})\n", "sns.set_context('notebook')\n", "sns.set_style(\"ticks\")\n", "from IPython.display import set_matplotlib_formats\n", "set_matplotlib_formats('retina', 'svg')\n", "import numpy as np\n", "import scipy.stats as st" ] }, { "cell_type": "code", "execution_count": 2, "id": "3aad2824", "metadata": { "tags": [ "hide-input" ] }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
householddatescoret_outt_unithvac
0a12018-01-07100.04.28337366.693229246.473231
1a102018-01-07100.04.28337366.3561345.492116
2a112018-01-0758.04.28337371.549132402.094327
3a122018-01-0764.04.28337373.429514211.692244
4a132018-01-07100.04.28337363.9239370.850536
\n", "
" ], "text/plain": [ " household date score t_out t_unit hvac\n", "0 a1 2018-01-07 100.0 4.283373 66.693229 246.473231\n", "1 a10 2018-01-07 100.0 4.283373 66.356134 5.492116\n", "2 a11 2018-01-07 58.0 4.283373 71.549132 402.094327\n", "3 a12 2018-01-07 64.0 4.283373 73.429514 211.692244\n", "4 a13 2018-01-07 100.0 4.283373 63.923937 0.850536" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import requests\n", "import os\n", "def download(url, local_filename=None):\n", " \"\"\"\n", " Downloads the file in the ``url`` and saves it in the current working directory.\n", " \"\"\"\n", " data = requests.get(url)\n", " if local_filename is None:\n", " local_filename = os.path.basename(url)\n", " with open(local_filename, 'wb') as fd:\n", " fd.write(data.content)\n", " \n", "# The url of the file we want to download\n", "url = 'https://raw.githubusercontent.com/PurdueMechanicalEngineering/me-297-intro-to-data-science/master/data/temperature_raw.xlsx'\n", "download(url)\n", "import pandas as pd\n", "df = pd.read_excel('temperature_raw.xlsx')\n", "df = df.dropna(axis=0)\n", "df.head()" ] }, { "cell_type": "markdown", "id": "b45d6570", "metadata": {}, "source": [ "Here is the scatter plot of `hvac` (consumed HVAC energy in kWh) and `t_out` (external temperature in degrees F):" ] }, { "cell_type": "code", "execution_count": 3, "id": "9e780be7", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABEEAAALkCAYAAADgYCuzAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdeXhU5dk/8O+ZbJPAkEAGkiAJwURQmyBBiAmJbVGqNahVbK1xTfX9+aqohZZXBetaC7a1dQFqrVWQtmJdqRrUulA1CcgWTSIQSAyGkISQQBaYTDLJnN8f6QyTfZbnnDln5vvp1esak3OeeTLM9tznfu5bkmVZBhERERERERFRgDP4ewJERERERERERGpgEISIiIiIiIiIggKDIEREREREREQUFBgEISIiIiIiIqKgwCAIEREREREREQUFBkGIiIiIiIiIKCgwCEJEREREREREQYFBECIiIiIiIiIKCgyCEBEREREREVFQYBCEiIiIiIiIiIICgyBEREREREREFBQYBCEiIiIiIiKioMAgCBEREREREREFBQZBiIiIiIiIiCgoMAhCREREREREREGBQRAiIiIiIiIiCgqh/p4A6UNDQwM++eQT538nJSUhMjLSjzMiIiIiIiKiQNbZ2Yna2lrnf19wwQVISEjwaUwGQcgtn3zyCR599FF/T4OIiIiIiIiC2HXXXefT+dwOQ0RERERERERBgUEQIiIiIiIiIgoK3A5DbklMTOz33w8++CBmzJjhp9kQERERERFRoKusrOxXlmHgutQbDIKQW6Kiovr994wZMzBnzhw/zYaIiIiIiIiCzcB1qTe4HYaIiIiIiIiIggKDIEREREREREQUFBgEISIiIiIiIqKgwCAIEREREREREQUFBkGIiIiIiIiIKCgwCEJEREREREREQYFBECIiIiIiIiIKCgyCEBEREREREVFQCPX3BPxt9erVWLNmjcfnXXnllXj88cf7/cxut+Ott97Cpk2bUFlZCYvFgokTJ2L27Nm45pprMHfu3FHHFTEGEREREREREQ0W9EEQb4WFhfX7746ODtxxxx3Yvn17v5/X19ejvr4ehYWFKCgowH333TfsmCLGICIiIiIiIqKhBX0Q5JprrsGCBQtGPa6urg5Lly6FzWbDxIkTsXjxYufvZFnGkiVLnMGL3Nxc5Ofnw2w2Y+/evXj++edx+PBhrFu3DhMmTMCtt946aHwRYxARERERERHR8II+CDJx4kRMnDhxxGO6u7uxYsUK2Gw2GAwG/OEPf0B8fLzz9++88w6KiooAAIsWLcKqVaucv5s1axYuueQSXHfddaiqqsKaNWtw+eWX9ztf1BhERERERERENDwWRnXDmjVrsGfPHgDAzTffjPPOO6/f79etWwcAGDt2LO69995B58fExOCRRx4BAHR1dWHDhg2DjhExBhERERERERENj0GQUezbtw8vvPACACApKQl33XVXv98fOnTIGSCZP38+YmJihhxnzpw5mDZtGgDg/fffFz4GEREREREREY2MQZBR/PrXv0ZPTw8A4Fe/+hWMRmO/3+/atct5Oysra8SxMjMzAQCHDx9GbW2t0DGIiIi0zmK1obaxHftrj6O2sR0Wq83fUyIiIqIgE/Q1QUby0UcfYefOnQCAnJwcfO973xt0TFVVlfN2cnLyiOMlJiY6bx84cABJSUnCxiAiItIiWZZRXt2MwuIabKtohN0uO39nMEjITktAXk4y0lPMkCTJjzMlIiKiYMAgyAhWr17tvH333XcPeUxjY6Pz9uTJk0ccLyEhYcjzRIxBRESkNVV1rXhy427UNnYM+Xu7XUZxWT2Ky+qRFG/C0vzZSJ0So+4kiYiIKKgwCDKMkpIS7Nu3D0DfFpRZs2YNeVxbW5vz9pgxY0YcMyoqynm7o+PUF0IRY7ijvr4e9fX1Hp3jUFlZ6dV5REQUnEorm7By/XZYu3vdOr62sQPL1xZhRUEmMmZMUnh2REREFKwYBBmGo1sLAPzP//zPsMd1d3c7bw+sFzKQ6+9dzxMxhjveeOMNrFmzxqNziIiIPFVV1+pRAMTB2t2Lleu3Y9XiXGaEEBERkSJYGHUI1dXV+PzzzwEAM2bMGLIWiENISIjz9mh7mWXZdR/0qYdexBhERERaIMsynty42+MAiIO1uxdPbdzd7/OOiIiISBSuoofw7rvvOr98LVq0aMRjXbenWK3WEY/t6upy3g4PDxc6BhERkRaUVzcPWwPEXd82dqCiukXQjIiIiIhO4XaYIXz44YcA+rIyLrnkkhGPda3h0dnZiXHjxg17rMVicd6Ojo4WOoY7rrrqKmRnZ3t0jkNlZSUeffRRr84lIqLgsbn4oJBxCktqkJ5qFjIWERERkQODIAMcPHgQBw4cAADMmTMHcXFxIx5/2mmnOW83NDSMeHxDQ4PztutxIsZwx+TJk0ftPkNERMHDYrWhubUT1u5eGMNDYI6JRJQxzKfxtlY0jH6gG7aWN8Bitfk0HyIiIqKBGAQZ4OOPP3beHi0LBADOOOMM5+3a2tphu8gAwKFDh5y3U1NThY5BRETkDlmWUV7djMLiGmyraITd7lprSkJ2WgLycpKRnmIetU7VQM2tnf3G84XdLqOlzcogCBEREQnFIMgAO3bscN4+77zzRj1+1qxZkCQJsixj586duPzyy4c9dvv27QCAhIQETJkyRegYREREo6mqa8WTG3cPW7PDbpdRXFaP4rJ6JMWbsDR/tkddWrwthjqczq4eoeMRERERsTDqAF9++SUAwGQyISUlZdTjExISnJkbH3zwAU6cODHkcTt37kRNTQ0A4OKLLxY+BhER0UhKK5uwfG2R20VLaxs7sHxtEUorm9y+D2N4yOgHeSAygtdqiIiISCwGQVwcOXIEx48fBwCkp6e7nQZ8ww03AABaW1vx0EMPwW639/t9W1sbHnroIQBAWFgYrr/+ekXGICIiGkpVXStWrt/ucaaGtbsXK9dvR1Vdq1vHm2MiYTB4toVmOCEGCbHRRiFjERERETkwCOLi4MGDzttJSUlun7dw4ULk5uYC6Guve8MNN+CDDz7Al19+iX/+85+48sorUVVVBQC46667kJiYqMgYREREA8myjCc37vZ6q4q1uxdPbdztbB0/kihjGLLTEry6n4Gy0hNYD4SIiIiEY56pC9fOKwkJnn2Je/rpp3Hbbbdhx44d2LlzJ3bu3DnomIKCAtx6662KjkFEROSqvLrZ7S0ww/m2sQMV1S1utazNy0lGcVm9T/cHAAvnTfN5DCIiIqKBGARxcfLkSeft+Ph4j84dO3YsNmzYgE2bNuHtt9/Gvn370NHRgfHjxyMjIwPXXXcdsrKyFB+DiIjI1ebig0LGKSypcSsIkp5iRlK8yafAy9R4E9JSYr0+n4iIiGg4DIK4uO6663Ddddd5fb7BYMCiRYuwaNEiv45BREQEABarDVsrGkY/0A1byxtgsdpG3aLS2dWD/Itm4MmNu9Fts4947FCM4SFYkj/b4/a8RERERO5gEISIiChANbd2wm4fvZaHO+x2GS1t1iGDILIso7y6GYXFNdhW0ej1fRrDQ7CiINOjtrxEREREnmAQhIiIKEB5Wwx1OJ1dPYN+VlXXiic37va57sjUeBOW5M9mAISIiIgUxSAIERFRgDKGhwgdLzKi/9eG0somr1rvOoQYJGSlJ2DhvGlIS4nlFhgiIiJSHIMgREREAcocEwmDQRKyJSbEICE22uj876q6Vq8DIOGhBvzi2tnImDGJbXCJiIhIVQZ/T4CIiIiUEWUMQ3aaZy3fh5OVnuAMWMiyjCc37vY6A6S7x46N/64clFlCREREpDQGQYiIiAJYXk6ykHEWzpvmvF1e3exzDZBvGztQUd3i67SIiIiIPMIgCBERUQBLTzEjKd7k0xhT401IS4l1/vfm4oM+zqpPYUmNkHGIiIiI3MUgCBERUQCTJAlL82d7XSTVGB6CJfmznUVLLVYbtlY0CJnb1vIGWKw2IWMRERERuYNBECIiogCXOiUGKwoyPQ6EGMNDsKIgs1/b2ubWTiGFVgHAbpfR0mYVMhYRERGROxgEISIiCgIZMyZh1eJct7fGTI03YdXiXGTMmNTv594WQx1OZ1eP0PGIiIiIRsKy7EREREEidUoM1iybj4rqFhQW12BrRUO/rI4Qg4Ss9AQsnDcNaSmxzi0wrrzdVjMcdoghIiIiNfGbBxERURCRJAnpqWakp5phsdrQ0mZFZ1cPIiNCERttdLbBHY45JhIGgyRkS0yIQUJstNHncYiIiIjcxSAIERFRkIoyho0a9BjqnOy0BBSX1ft8/1npCR7fPxEREZEvWBOEiIiIPJKXkyxknIXzpgkZh4iIiMhdDIIQERGRR9JTzG4XWB3O1HgT0lJiBc2IiIiIyD0MghAREZFHJEnC0vzZXhdJNYaHYEn+7CELrxIREREpiUEQIiIi8ljqlBisKMj0OBBiDA/BioJMpE6JUWZiRERERCNgEISIiIi8kjFjElYtznV7a8zUeBNWLc5FxoxJCs+MiIiIaGjsDkNEREReS50SgzXL5qOiugWFxTXYWtHQr31uiEFCVnoCFs6bhrSUWG6BISIiIr9iEISIiIh8IkkS0lPNSE81w2K1oaXNis6uHkRGhCI22sg2uERERKQZDIIQERGRMFHGMAY9iIiISLNYE4SIiIiIiIiIggKDIEREREREREQUFBgEISIiIiIiIqKgwCAIEREREREREQUFFkYlIiIiTbBYbWhu7YS1uxfG8BBEGUNhsfY4/9scE8miq0REROQTBkGIiIjIb2RZRnl1MwqLa7CtohF2uzzssQaDhOy0BOTlJCM9xQxJklScKREREQUCBkGIiIhIMQOzO1yzOarqWvHkxt2obexwayy7XUZxWT2Ky+qRFG/C0vzZSJ0So+DsiYiIKNAwCEJERDSMkRbwgUKJv3Gk7A5HNsf0pBhs/HclrN29Xt1HbWMHlq8twoqCTGTMmOTTfImIiCh4MAhCRETkwp0FvN63Yyj5N46W3eGazeEra3cvVq7fjlWLc5kRQkRERG5hEISIiOi/PFnA63U7hpJ/Y2llE1au3+51doc3rN29eGrjbqxeNl+3QSkiIiJSD1vkEhERoW8Bv3xtkdv1KRzbMUormxSdl8VqQ21jO/bXHkdtYzssVpvXY+2uPIJ7V3+uyN9YVdeqegDE4dvGDlRUt6h+v/4m8rlBREQULJgJQkREQc/bBbxS2zGU2K6yZdchPLlxN+Thm68MyZ2/UZZlPLlxt18CIA6FxTVITzX77f7VEgzbtYiIiJTEIAgREQU1XxfwordjKLFdZfe+I14FQBxG+xvLq5vdzi5RytbyelistoArXOsqGLZrERERKY3bYYiIKKiJWMCL2o6hxJacqrpWPLZuu9cBEIeR/sbNxQd9G1wAuwy0tFn9PQ3FaHW7FhERkd4wCEJEREFN1AK+sKTGp/N93ZJTVdc66HeOLBdbj92nuTkM9TdarDZsrWgQMr6vjrcHZhBEiecGERFRsGIQhIiIgpbIBfzW8gavC1OK2pIjD0j3EL1NZai/sbm1s19dCn+y2vxXk0QpSj03iIiIghWDIEREFLRELuDtdtnj7RiO7h6bS2oU2ZIjepuK698oyzLKqo7iz2+VCb0PXxjDQvw9BeG0tF2LiIgoELAwKhERBS3R3Uw6u3pGPWak7h6+Kiw51SFFqW0qnV09oxbo9Jfx44z+noJwIrdrBUP3HCIiotEwCEJEREHLGC42cyAyYuSPVaWDB47tKlHGMMW2qRysb8Pz/6rwazvcoRgkIDY6sIIgSmzXCuTuOURERO5gEISISEcsVhuaWzth7e6FMTwE5phILmp8EGUU+zEYGTF8UKW0ssmr4paecGxXiTKGKXI/BoOEv2wqR5dNTKFVkbLSEwLutaDEdq1Ae4yIiIg8xSAIEZHGjbR9wmCQkJ2WgLycZKSnmCFJkh9nqj8W6+jbVzzR2TV04MHb7h7ezaHvbxKd5eIYU/RjJsqlOaf7ewrC+WO7FhERUaBjEISISMNG2z5ht8soLqtHcVk9kuJNWJo/G6lTYtSdpI6pscj0tbuHp44cs8AYHoIoYygMBknolhitBkCmxpuQlhLr72kIp/Z2LSIiomDAT0MiIo3ydPtEbWMHlq8twoqCTGTMmKTw7AKDGotM0W1qR/O7v+0E0JclNN4U4XHHmuFEGUM1GQQxhodgSf7sgMyCMsdECgtkhRikgKuZQkRE5A22yCUi3XO0Gd1fexy1je2wWG3+npLPvN0+Ye3uxcr121FV16rMxAKMY5EpwnCLTNFtat3lTcve4YSFGhTbShERZsDPLj0b35k2weNzjeEhWFGQGbDZT1HGMGSnJQgZKxBrphAREXmDmSBEpEuBXCfD1+0T1u5ePLVxN1Yvm6+7v11tjkVmcVm9z2MNtchUqk2tmiQJuPWKNKx9vUz42FPjTfj5NRno7OpBZe1xGCTA3aSHqfEmLAmC7V95OclCnp8L500TMBsiIiL9YxCEiHQn0OtkiNg+8W1jByqqW5CeahY0q8Cl5CJTqTa1apEkYGn+bJw2cazQcc85w4yfLpiByIgQPPlKqdvPd4MEZM+cjIXzpiEtJTYognzpKWYkxZt8ek8I1JopRERE3uB2GCLSldLKJixfW+T2gsBRJ6O0sknhmYkjavtEYUmNkHECnWOR6YvhFplqFUNVQlioAQ//Txbmn5sovHbK/145Ez29diz/U7FHi/uwsBBcfN5UpKfqL8PLW5IkYWn+bK//DQK5ZgoREZE3GAQhIt0IhjoZIrdPbC1vCIj6KEpTcpGpRJtaNUyNN+F3d52P2WfGARBfO6XtRJdXr+UuHb2WRUqdEoMVBZkeP58CvWYKERGRNxgEISJdEFUnQ5a1vTVB5PYJkYUxA51Si0yRwQORYqONg+YVYpCQc85krLw9B6uXze/3N4ks0HleWjyefbMs4F/LomXMmIRVi3PdzlqaGm/CqsW57BRFREQ0AGuCEJEuBEudDNHbJ5Tq6BGIHIvMkerNuHKnMKfIwqsiHe/owgv3L0BnVy86u3oQGRGK2GjjiN1DRNVOOSt5AkrKfMt20sNrWQmpU2KwZtl8VFS3oLC4BlsrGvoFTUMMErLSE4KqZgoREZGnGAQhIl0QWSdDywsn0dsnIiP4Nu8JJRaZooIHItntMjq7epEY534tFFEFOvcePOb1+a60/lpWiiRJSE81Iz3VDIvVhpY2q9uBLCIiImIQhIh0QIk6GVpdKDi2T4jYEhNikBAbbRQwq+AiepEpInigBE+zhBy1U5avLfIqY8kYHoLbFs3E/X8u8fjcoWj9tayGKGNYUP/9RERE3mBNECLSvGCqkyGy9kJWeoLmFkgWqw21je3YX3sctY3tmi/cGmUMQ2KcCdOTxiMxzuTV4+lr4VWleJMl5GvtlHFjwoPmtUxERETaxEwQItK8YKuTIWr7xMJ50wTMxneyLKO8uhmFxTXYVtHYbxFsMEjITktAXk4y0lMCt+2pI3jgTUcUJfiSJeRL7ZT9tce9us/haP21TERERNrDIAgRaV6w1ckQVXshLSVW4Ky8U1XXOuJi2W6XUVxWj+KyeiTFm7B0lEKjeuZp8EBJvmYJeVs7Jdhey0RERKQ9/PZARJoXbHUyRNReWJI/2+9ZFaWVTR5lPtQ2dmD52iKsKMgM2LaeowUP1CIiS8ib2inB9lomIiIi7WEQxMWBAwfwyiuvoKSkBI2NjbDb7TjttNNw/vnno6CgAAkJw+/Tt9vteOutt7Bp0yZUVlbCYrFg4sSJmD17Nq655hrMnTt31PsXMQZRIBLZZlSLdTKG4u32CUftBX9nU1TVtXq19cPa3YuV67dj1eJcv/8NShkuePD39/eitPKo4vevRJaQuwU6g/G1TERERNrCIMh//elPf8LatWvR09N/f3F1dTWqq6vx+uuv449//CO+973vDTq3o6MDd9xxB7Zv397v5/X19aivr0dhYSEKCgpw3333DXv/IsYgCmSBVifDHY7tE398eRcOHTkx6vFJcWOx9Npz/R48kGUZT27c7XXtC2t3L57auBurl833ezaL0lyDBz++4AzFgyBayBIKxtcyERERaQeDIADWrFmD1atXAwDGjx+Pm2++GRkZGejp6cH777+PV199FSdOnMDdd9+NN998EykpKc5zZVnGkiVLnMGL3Nxc5Ofnw2w2Y+/evXj++edx+PBhrFu3DhMmTMCtt9466P5FjEEU6AKpToanJLi7YNVGwKC8utnnmhffNnagoroF6almQbPSPqVb6WolSyiYX8tERETkf0HfInfv3r149tlnAQCnnXYaXnvtNdx6662YO3cusrOz8cgjj+Dhhx8GAFitVjz99NP9zn/nnXdQVFQEAFi0aBFeeOEFLFiwALNmzUJ+fj7efPNNpKamAugLtjQ2Ng6ag4gxiAKdr21GtXAF3FOllU1YvrYItUfcWyzWHumrqVFa2aTwzEa2ufigkHEKS2qEjKMXSrbSnRpvwqrFuZqotRKMr2UiIiLSjqAPgjzzzDPo6emBJEl46qmnkJiYOOiYn/70p5g+fToA4JNPPoHVanX+bt26dQCAsWPH4t577x10bkxMDB555BEAQFdXFzZs2DDoGBFjEAUDR50MTxdPWrkC7glfa2pU1bUqM7FRWKw2bK1oEDLW1vIGWKw2IWPphbfPcYNBwsCYQIhBQs45k7Hy9hysXjZfU8//YHotExERkbYE9XaY48eP4/PPPwcAXHzxxZg5c+awx95yyy3YtWsXxo8fD4vFAqPRiEOHDmHPnj0AgPnz5yMmJmbIc+fMmYNp06ahpqYG77//Pu655x7n70SMQRRMPG0zOjXehCU6a7uq55oaza2dwrqd2O0yWtqsQVf80tvn+GTzGLc6tGhFMLyWiYiISHuCOghSUlICm63vKuOll1464rFXXHEFrrjiin4/27Vrl/N2VlbWiOdnZmaipqYGhw8fRm1tLZKSkoSNQRRsRmszGmKQkJWegIXzpiEtJVZ3afN6rqnhbeBmOJ1dPaMfFIC8fY5rOegxlEB/LRMREZH2BHUQZN++fc7brlkgdrsdR48excmTJxEXF4cxY8YMeX5VVZXzdnJy8oj35brN5sCBA84AhogxiILRcG1G9XAFfDQia2qoHQQRXc8iMsK/H1MWqw3NrZ2wdvfCGB4Cc0ykas+tQH6OuwqWv5OIiIi0IaiDIAcOHAAAhIWFYdKkSWhubsbq1avx3nvvoa2tDQAQEhKCuXPn4q677sKcOXP6ne9aoHTy5Mkj3ldCQsKQ54kYw12OdrveqKys9Oo8IjW4thnVOyVqaqj52JhjImEwSEK2xIQYJMRGGwXMyjOyLKO8uhmFxTXYVtHY728xGCRkpyUgLycZ6Slm1TITAuk5PpJg+TuJiIjIf4I6CNLa2gqgryDpl19+idtuu835M4fe3l5s27YNX3zxBe655x7cfPPNzt85AiUAhs0WcYiKinLe7ug4leYuYgx3vfHGG1izZo3H5xGRevReUyPKGIbstAQUl3kXcHWVlZ6g+oK4qq51xBoVdruM4rJ6FJfVIynehKU6r1Hhz0wXIiIiIn8I6iDIyZMnAfR1XLntttvQ1taGG264Addccw2SkpJw7NgxvPfee3jmmWdgsVjw29/+FvHx8cjLywMAdHd3O8cyGke+Wun6e9fzRIxBRIEjEGpq5OUkCwmCLJw3TcBs3Fda2eRRR57axr6WxCsKMjXRetZdWsx0ISIiIlJLUAdBOjs7AQAWiwUWiwWPPfYYfvKTnzh/Hx8fj5/97GfIyMjA9ddfD5vNhscffxwXXnghIiIiEBJyau/7aF8UZdn1S+apzsQixiCiwBEINTXSU8xIijf5VNx1arwJaSmxAmc1Ml9bEq9anKuLjJBgy3QhIiIiGiiogyCumRXZ2dn9AiCuZs2ahR//+MfYuHEjjhw5gpKSEsyfP7/f9hSr1Yrw8PBh76urq8t52/U4EWO466qrrkJ2drbH5wF9NUEeffRRr84lIvcFQk0NSZKwNH82lq8t8iqzxRgegiX5s1XLQtBzS2JPBEumCxEREdFIgjoIMnbsWOftiy66aMRjL7jgAmzcuBEA8OWXX2L+/Pn9anh0dnZi3Lhxw55vsVict6Ojo523RYzhrsmTJ49afJWI/EvvNTUcUqfEYEVBpsfZFcbwEKwoyFQ1+0DPLYndFSyZLkRERESjCeo9FRMnTnTejo+PH/FY1+DB8ePHAQCnnXaa82cNDSN3c3D9fVxcnPO2iDGIKLDk5SQLGUftmhoDZcyYhFWLc5EUb3Lr+KnxJqxanKt61oHIlsRaJCrTxXVLJhEREZFeBXUQZMaMGc7brl1ahuJaiNSRrXHGGWc4f1ZbWzvi+YcOHXLeTk1Ndd4WMQYRBRZHTQ1fqF1TYzipU2KwZtl8rLw9BzkzJ8Ng6L9dJMQgIeecyVh5ew5WL5uveraBEi2JtUZkposaLFYbahvbsb/2OGob2zX5mBIREZF+BfV2mFmzZjlv79q1C1deeeWwxx44cMB5e8qUKc7zJUmCLMvYuXMnLr/88mHP3759OwAgISHBeb6oMYgosOitpsZoJElCeqoZ6almWKw2tLRZ0dnVg8iIUMRGG/3aklXvLYndITLTRantPuxYQ0RERGoJ6kyQ7Oxs55aY9957D83NzcMe+9ZbbwHo6+ZywQUXAOgLRjgCKR988AFOnDgx5Lk7d+5ETU1fmvTFF1/c73cixiCiwOOoqeFptxh/1NTwRJQxDIlxJkxPGo/EOJPfAwaB0JJ4JHrIdKmqa8WdT2zB/c+WoKSsYVBQytGx5v5nS3DnE1tQVdcqfA5EREQUPII6CBISEoJbbrkFAHDixAksW7YMJ0+eHHTcSy+9hK1btwIAfvCDH2DSpFP71W+44QYAQGtrKx566CHY7fZ+57a1teGhhx4CAISFheH6668fNL6IMYgo8OilpoaeBUJL4pEokekiUmllE5avLXJ7u46jY01pZZPQeRAREVHw0Na3NT+46aab8J///Afbtm3D1q1bceWVV+Kmm27CWWedhY6ODrz99tt49913AQATJkzAgw8+2O/8hQsX4s0330RRURHeffddNDY24sYbb0RcXBwqKyvx3HPP4fDhwwCAu+66C4mJiYPmIGIMIgpMjpoaFdUtKCyuwdaK/lfKQwwSstITsHDeNKSlxHKrgIcCoSXxSLSc6cKONUREROQPQR8EMRgMeO6553Dvvffi/fffx7fffotHH3100HHJyclYu3YtYmMHFxp8+umncdttt2HHjh3YuXMndu7cOeiYgoIC3HrrrcPOQ8QYRBSYtFxTQ+8CpSXxcLSa6SKqY83qZfMZ+CMiIiKPBH0QBACMRiOefvpplJSU4I033sDu3bvR3NwMk8mEqVOn4tJLL8UVV1yBMWPGDHn+2LFjsWHDBmzatAlvv/029u3bh46ODowfPx4ZGRm47rrrkJWVNeIcRIxBRIEvyhimuYW23uXlJAsJgvi7JfFQtJrpIrJjjVLFWomIiCgwMQjiYt68eZg3b55X5xoMBixatAiLFi3y+v5FjEFE2mGx2tDc2glrdy+M4SEwx0QygKFBjpbEvizKtdKSeCCtZrrooWMNERERBSYGQYiIBGKrT/0JtJbEA2kt00WJjjUMLhIREZG7GAQhIhKkqq4VT27cPWxGgaPVZ3FZPZLiTViaP5uFHTXC0ZLY00KdWm9JDGgv00WJjjUMghAREZG7grpFLhGRKGz1qX+B2pLYkenibZFU0ZkuWu5YQ0RERIGPQRAiIh/52uqzqq5VmYmRxxwtiVfenoOcmZNhMPRf+IcYJOScMxkrb8/B6mXzNZ0B4sqR6eJpIESJTBetdqwhIiKi4MBvDkREPmCrz8ATqC2JHZkuI23ZcjU13oQlCmzZ0mrHGiIiIgoODIIQEfmArT4DW6C1JHZkulRUt6CwuAZbKxr6BSNCDBKy0hOwcN40pKXEKhKY02rHGiIiIgoODIIQEfmArT5Jb7SQ6aK1jjVEREQUPBgEISLyElt9kt75K9NFax1riIiIKHiwMCoRkZeUaPVJFAy01rFGbyxWG2ob27G/9jhqG9thsdr8PSUiIiLdYCYIEZGX2OqTyHuOjjWedlZSomONmixWG5pbO2Ht7oUxPATmmEi3snFkWUZ5dTMKi2uwraKxXwDWYJCQnZaAvJxkpKeYgzY4RERE5A4GQYiIvMRWn0S+0UrHGqX5GsCoqmsd8TGy22UUl9WjuKweSfEmLNXhY0RERKQWfuMmIvISW32e4u3VbeoTzI+fFjrWKMnXAEZpZZNH2TK1jR1YvrYIKwoykTFjkog/gYiIKKAwCEIBJZgXEqS+YG/1yfR83/DxO0ULHWuU4GsAo6qu1ePtQkDfVr2V67dj1eLcETNC+JlJRETBiEEQ0j0uJMifgrXVJ9PzfcPHb3j+6lgjms8BjDty8OQrpV7XHrJ29+Kpjbuxetn8fp99/MwkIqJgxyAI6RoXEuRvarf61MKVW6bn+0Yrj58WnkuBSpZlPLlxt08BjMc37MSRYxaf5vFtYwcqqluQnmoGwM9MIiIigEEQ0jGtLCTI//y5mHO0+ly+tsirBY87rT61dOVW6fT8QOfvx09Lz6VAVl7d7FNgFIDPARCHwpIapKea+ZlJRET0XwyCkC75eyFB/qelxZySrT61dOVWxNXtodLzg4W/Hz8tPZcC3ebig/6egtPW8gZUVDfzM5OIiOi/DP6eAJGnRC0kZNn3jh7kH1V1rbjziS24/9kSlJQ1DOrO4ljM3f9sCe58Yguq6loVn5Oj1WdSvMmt46fGm7Bqce6IV1hLK5uwfG2R21eUHVduSyub3DreUyKubjvS84ORPx8/rT2XApnFasPWigZ/T8PJbpfxzKtf8jOTiIjovxgEId3hQiy4aXkx52j1ufL2HOTMnAyDof/V+hCDhJxzJmPl7TlYvWz+qBkgvly5VSLwI+rqdmFJjZBx9MZfj58Wn0uBrLm1U0jbbJEamk/6dD4/M4mIKJBwOwzpjsiFhKNYHOmDHrZBubb6bG614JvDbWg/2Y1xY8Jx+mnRMMdEjTqGv7dNDEXk1e2t5Q2wWG1BVYTTX4+fFp9Lgc7bx1rr+JlJRESBgkEQ0hUuxIKXXhZzImqViMx2ErVoEXl1226X0dJmDarXnr8ePy0+lwKdMTzE31NQBD8ziYgoUDAIQrrChVjw0sNiTlThSS1mO4m+ut3Z1SN0PK3z1+OnxedSoDPHRMJgkDS3JcZX/MwkIqJAwZogpCtciAUvrdejEFWrRIlsJxFEX92OjAiuGLw/Hj+tPpcCXZQxDNlpCf6ehiL4mUlERIGAQRDSFS7EgpPWF3MiC08qke0kguPqtgghBgmx0UYhY+mFPx4/rT6XgkFeTrKQcSaNj/Tp/ATz6DWIPMHPTCIiCgQMgpCucCEWnLS8mBPdslmr2U4ir25npScEXUq9Px4/rT6XgkF6itntdtnDmRpvwn03zfU6+G8MD8HdV2fwM5OIiGgABkFIV7gQC05aXsyJbtms5WwnUVe3F86bJmQcvVH78dPycynQSZKEpfmzfQpgLMmfjTMSx2NFQabH4xjDQ7CiIBNpKWZ+ZhIREQ3AIAjpDhdiwUfLiznRtUq0nO0k6up2WkqsoBnpi9qPn8jnkoFZAB5LnRLjUwDDUTQ5Y8YkrFqc6/ZzZ2q8CasW5yJjxiQA/MwkIiIaiEEQ0h0uxIKPVgMDSrVs1uqVW1FXt5VsUaxlaj9+Ip9LxvAQZoJ4wdcAhkPqlBisWTYfK2/PQc7MyYPeD0MMEnLOmYyVt+dg9bL5/bpO8TOTiIioP36jId1xLCSWry3yaptEsC/E9MixmCsuq/d5LJGBAaVaNuflJAv5W5W4cuu4uu1pIdiBV7eDldqPn6jnksXao2h76UDmCGBUVLegsLgGWysa+r1vhBgkZKUnYOG8aUhLiR32s0mSJKSnmpGeaobFakNLmxWdXT2IjAhFbLRx2Pc1fmYSERH1xyAI6RIXYsFHi4EBpWqVOK7c+lJrRMkrt46r209u3O3WHKfGm7AkfzZfd/+l5uOXnmJGVEQoLALq4BSW1DAI4iVvAxjDiTKGeXQOPzOJiIhOYRCEdIsLseCixcCAUrVK9HDlVtTV7WCl1uPX2dWDzm4xhYBdt2yR9zwNYIjCz0wiIqI+DIKQrg1cSJSU10N22Z1gkIDsmZO5EAsAWgwMOGqViNgSM7BWiR6u3Iq+uh1s1Hj8mls7+70n+sJ1yxbpE4OXREREDIJQgJD/+z8JEmS4fuOXABkDfkZ6pbXAgNK1SvR05dZfV7cDhVKPn5bbS5N/MHhJRETBjkEQ0rWqulY8+fJu1B4ZeoFol2UUl9WjuKweSXEmLL2Wqb16p7XAgNK1SnjllgayWG1obu2EtbsXxvAQmGMih124arm9NPkfg5dERBSM+G2GdKu0sgmPrfsC3Ta7W8fXHunAvWs+x69+dt6g9oOkL1oKDKhRq4RXbgOXuwENWZZRXt2MwuIabKto7Pd8NxgkZKclIC8nGekp5n7PdyW3bBERERHpEYMgpEtVda147MUv0N3jXgDEodtmx2MvfoHf3nU+M0J0TiuBAbVrlfDKrf55GtCoqmsdMfPJbnfJeIs3YalL5pPW2kt7ksVCREREpAQGQUh3ZFnGbzfs8DgA4tDdY8fvNuzEc8sv5NaBAOHvwIDWapWQdnka0Mibl4z17+5x+3lV29iB5WuLsKIg05nx5u/20t5msQyFQRQiIiLyFYMgpDtlVc1obLH4NEZDy0mUVzVj5hkTBc2Kgp3WapWQ9pRWNnkUKKtt7MCf3yz3+H6s3b1YuX47Vi3OReqUGL+2l/Yli8VBZBCFiIiIiEEQ0p1X/l0pZJyNH1YyCEJCaalWCWlLVV2rx5lCvrB29+Kpjbuxetl8v7WX9iboMzCLRUQQhYiIiMgVgyCkKxarDRXftAgZq6K6BRarjanUJJRWapWQdsiyjCc37lYtAOLwbWMHKqpbkJ5qVn3LlrdBH9cslo6T3T4HUYiIiIgGMvh7AkSeqGvyPp176PFOCB2PyFWUMQyJcSZMTxqPxDgTAyBBqry62aetKL4oLKlx3nZs2UqKN7l17tR4E1YtzvU4oOBr0Mfa3YvfbtjhUxClqq7Vq/smIiKiwMdMENIVX2uBDHTkmAXTk8YLHZOIyNXm4oN+u++t5Q39Mt7U2LIlIujjy3v9wK1ARERERK4YBCEiIlKIxWrD1ooGv92/3S6jpc3aLwtJ6S1b/gz6OLhuBSIiIiJyxSAI6UrchChNj0cUrNi6dGjNrZ39Mi38obOrZ9jfiW4v7e+gj6vCkhoGQYiIiGgQBkFIVxLj3NvL7q4pk8YKHY8omLB16ejULoY6lMgI9T7qtRD0cRi4FYiIiIgIYBCEdCbKGIbkhHE42NDu81jJk8fxyzGRl9i61D3G8BC/3n+IQUJstFG1+9NC0MdhqK1AREREROwOQ7ozxigmdidqHKJgU1rZhOVri9wufuloXVpa2aTwzLTHHBMJg8F/WTBZ6QmqBgH8HfQZaKStQERERBScGAQhXbFYbdj77XEhY+09eBwWq03IWETBoqqula1LPRBlDEN2WoLf7n/hvGmq3p+/gz4DqbkViIiIiPSBQRDSFZH7zR2p0kTkHlmW8eTG3V5veXC0LpVlbdSMUEteTrJf7ndqvAlpKbGq3qe/gz6u1N4KRERERPrAIAjpiuj95kyVJnJfeXWz21tghuNoXRpM0lPMSIoXW9R5NMbwECzJn+2XgrT+CvoMpPZWICIiItIHBkFIV0TvN2eqNJH7NhcfFDJOYUmNkHGGY7HaUNvYjv21x1Hb2O73bW+SJGFp/mzV6mUYw0OwoiDTb4Vo/RH0GYraW4GIiIhIH7gCJF1x7DcXsSWGqdJE7rNYbdha0SBkLCVal2q9XW/qlBisKMj0uJ6KMTwEBZeejc0lB93Kwpkab8ISP3ficQR9lq8t8ip7LyLMgPHjjGhssXg9B39sBSIiIiJ9YBCEdMWx37y4rN7nsZgqTeQ+JerxiHr96aVdb8aMSVi1OHfEubpyDWjkzZuGiuoWFBbXYGtFQ79/ixCDhKz0BCycNw1pKbF+CfIM5EvQZ0VBJkxjwr0OovhzKxARERFpH4MgpDt5OclCgiBMlSZyn1br8ZRWNnm00Ha0611RkImMGZOEzMETqVNisGbZfI8DGpIkIT3VjPRUMyxWG1rarOjs6kFkRChio42aDOj6EvQB4FMQxZ+ZMERERKRtDIKQ7qSdHouwUANsPXavxwgLNeA7p08QOCuiwKbFejy+tutdtTjXL4tlXwMaUcYwTQY9huJt0AfwPYhCRERENBQGQUh3Kr5p8SkAAgC2Hju+/uYY0lPNgmZFFNi0Vo9HVLve1cvm+3XbhJ4CGt7yJejjSxCFiIiIaCgMggD49NNPceutt7p1bG5uLl544YVBP7fb7XjrrbewadMmVFZWwmKxYOLEiZg9ezauueYazJ07d9SxRYwRDER2qGAQhMg9WqvHI7JdL98H1ONN0EePW4GIiIhIuxgEAbBv3z6fzu/o6MAdd9yB7du39/t5fX096uvrUVhYiIKCAtx3332KjhEMtN6hgiiQaakeD4OhwSkYMmeIiIhIWQyCANizZw8AwGw2469//euIx44dO7bff8uyjCVLljiDF7m5ucjPz4fZbMbevXvx/PPP4/Dhw1i3bh0mTJgwZMaJiDGChZY7VBAFuvQUM5LiTT5lYIhoXcpgKBERERF5i0EQAHv37gUAnH322TjrrLM8Ovedd95BUVERAGDRokVYtWqV83ezZs3CJZdcguuuuw5VVVVYs2YNLr/8csTHxwsfI1hotUMFUTCQJAlL82f7vXUpg6FE2mOx2tDc2glrdy+M4SEwx0TydUVERJpk8PcE/O3EiROora0F0BcE8dS6desA9GWI3HvvvYN+HxMTg0ceeQQA0NXVhQ0bNigyRrDQYocKomCSOiUGVy+Y7tW5Vy+YLqRzB4OhRNogyzLKqo5i1Uvbkf/Ae1j8+y345dOfYfHvtyD/gffw+Es7UFZ1FLIsJmhJREQkQtAHQfbt2+f8cPY0C+TQoUPOrTTz589HTEzMkMfNmTMH06b17YF///33hY8RTBwdKkQQ0aGCKNhU1bXi1Y/2e3Xuqx/tR1Vdq89zEB0MJSLPVdW14s4ntuD+Z0tQUtYwKDvLbpdRXFaP+58twZ1PbBHy2iciIhIh6IMgjgAEAHznO9/x6Nxdu3Y5b2dlZY14bGZmJgDg8OHDzswTUWMEE0eHChFEdKggCiai2tL6elVYZDAUAJY98xmvWBN5oLSyCcvXFrldH6i2sQPL1xahtLJJ4ZkRERGNLuiDII56ICaTCb29vVi1ahUWLlyImTNnYvbs2bjyyiuxZs0atLe3Dzq3qqrKeTs5OXnE+0lMTHTePnDggNAxgk1eTrKQcUR0qCAKJiLb0vpCZDAUAGQZmr9ibbHaUNvYjv21x1Hb2A6L1ebvKVGQqqprxcr12z0Ohlq7e7Fy/XZNvr6IiCi4BH1BBEcmiM1mw6WXXgqb7dQXy66uLuzZswd79uzB3//+d6xevRpz5851/r6xsdF5e/LkySPeT0LCqS/srueJGMNdjna73qisrPTqPCWkp5gRHxuFxhaL12PEx0b53KGCKNhoqS2tqHa9AzmuWK8oyETGjEnCx/eELMsor25GYXENtlU09ttuYDBIyE5LQF5OMtJTzD4XmyVyh6hssNXL5vM5S0REfhPUQZDu7m5UV1cDAKxWK0wmEwoKCnDeeedh3LhxqKmpwRtvvIHt27fj+PHjuOWWW/Dyyy8jLS0NANDW1uYca8yYMSPeV1RUlPN2R8epK6kixnDXG2+8gTVr1nh8XiCSwC9fRJ7QWltaEe16h+O4Yr1qca6QQq7eqKprxZMbdw/79znqLRSX1SMp3oSl+bP9NlcKHiKzwXwJhLITDRER+SKogyAHDhxwZn4kJyfjhRdewJQpU5y/P+ecc3DFFVfgD3/4A/7yl7+gq6sL99xzD959910YDAZ0d3c7jzUaRy6w6fp71/NEjBFsyqubfcoCAYCGlpM+fwkjCiZaa0vra7ve0fjzinVpZZNH2w20lL1Cgc2f2WDMjCIiIlGCuibImWeeiQ8//BDr1q0bFABx9Ytf/AIZGRkAgOrqavznP/8BAISEnOpQMNoHrmuxPYPh1MMuYoxgI/JLGBG5R4ttaVOnxGBFQaZi3WJE1C/xFOstkFYpkQ3mLnaiISIikYI6EyQkJARJSUlISkoa8ThJkvDTn/4UpaWlAICSkhJccMEF/banWK1WhIeHDztGV1eX87brcSLGcNdVV12F7Oxsj88D+mqCPProo16dK5LWUvKJgoXoQENkhJiPn4wZk7Bqce6IW0d8IaJ+ibtYb4G0zF/ZYMyMIiIi0YI6COKJs846y3n78OHDAPrX8Ojs7MS4ceOGPd9iObV9Izo62nlbxBjumjx58qjFV7VOayn5RMHC0ZZWxOsvxCAhNnrk7X+eSJ0SgzXL5qOiugWFxTXYWjH4SrG31AyWaqXeAtFQ/JEN5mtmlD/r+hARkXYF754KDw1Vj+O0005z/qyhYeTsBNffx8XFOW+LGCOYaDElnygYiGxLm5WeIDyoIEkS0lPNuO+mufjdnbnCxnUES9XArX6kZWpng4nKjHLdSkxERAQEeRBkz549+Pe//42NGzeis7NzxGNbWk7tCzeb+66wnXHGGc6f1dbWjnj+oUOHnLdTU1Odt0WMEUy0mpJPFAzycpKFjLNw3jQh4wxH9FYQNYKl/qy3QOQORzaYCO5kg4nMjCIiInIV1EGQ559/HnfddRcefvhhfPnllyMeu2vXLuftmTNnAgBmzZrl/LK9c+fOEc/fvn07ACAhIaFfAVYRYwQTtb+EEdEpjra0vpgab0JaSqygGQ1Nj8FSJbb6aYXFakNtYzv21x5HbWM7AzQ6pXY2GDOjiIhIKUEdBMnKynLe3rRp07DHdXZ24pVXXgEAhIWF4aKLLgLQF4yYNWsWAOCDDz7AiRMnhjx/586dqKnp+xC++OKL+/1OxBjBROsp+USBzNGW1tsggzE8BEvyZytetFOPwVLRW/2+3N8kdDxPybKMsqqjWPXSduQ/8B4W/34Lfvn0Z1j8+y3If+A9PP7SDpRVHeVWBZ1RKxuMmVFERKSkoA6C5OXlISYmBgDw9ttv46OPPhp0jM1mw7333usshnrttddi4sSJzt/fcMMNAIDW1lY89NBDsNvt/c5va2vDQw89BKAvgHL99dcPug8RYwQTvaTkEwUib9vSGsNDsKIgU5UihXoMlorOXllfuMdvbULZzjRwqZUNpqXMKGYyEREFnqAuiGAymfDQQw/hF7/4Bex2O+6++2785Cc/wUUXXYSxY8di//792LBhA/bv3w+gbxvM0qVL+42xcOFCvPnmmygqKsK7776LxsZG3HjjjYiLi0NlZSWee+45ZwDlrrvuQmJi4qB5iBgjmDi+hPmyV1iNlHyiQOVpW9qp8SYsyZ+tapeGvJxkFJfV+zyOWsFSkd13AKDbZvdLu1y2Mw1sjmyw5WuLvMpecjcbzN9F0GVZRnl1MwqLa7CtorHf69JgkJCdloC8nGSkp5jZjpqISIeCOggC9GWDdHd34+GHH3Zue3FsfXGVm5uLJ598EpGRkYN+9/TTT+O2227Djh07sHPnziFrexQUFODWW28ddh4ixggWan0JI6LhjdaWNsQgISs9AQvnTUNaSqzqrze9BUsd2SsiAjcO7rbLtVhtaG7thLW7F8bwEJhjIr3KfmE70+DgyAbz9N/ak2wwf9b1qaprHTHA68hkKi6rR1K8CUtVDvASEZHvgj4IAgBXXHEFzjvvPPzjH/9AUVERamtr0d3dDbPZjJkzZ+JHP/oRLrzwwmHPHzt2LDZs2IBNmzbh7bffxr59+9DR0YHx48cjIyMD1113Xb/6I0qNEUzU+BJG+iFqEUeecbSlTU81w2K1oaXNis6uHkRGhCI22ujXfwM9BktFZa+4KiypGTIIIvpKt6h2pmpnrpB3lM4GE5kZ5UldH2YyEREFB0lmVTJyw86dO3Hdddc5//sf//gH5syZ48cZ9Rntio0rf6Tkk3KYrkzuKK1swmMvfoHuHvvoB/9XeKgBv7r5PMUXNQODd7HRRtyzpsjntqCuDAYJG399Sb+AlCfvm+5e6S6rOor7ny3xdbpYeXvOqJkrpB2yLCuWDfb4SzuEBAVzzpmM+26cO+pxVXWtPgVNmclERKQMJdahzAQhXdN6Sj4pg+nK5BFPX/YKvk2MFrxLT4lF/dGT6Ol1P2gzEkdRSEcQRKkr3SLbmTIIoh9KZoOpWdeHmUxERMGFQRDSPS2n5JN4TFcmdzlqVHTbPAsodNvsitSocCd499WBZmH35+AoCqlUzQ4l2pnyfVt/ooxhQv/d1KzrU17d7HMGlrs1eIiIyP+CukUuBZ4oYxgS40yYnjQeiXEmfpEOML4u4tiKM3iIurIrasdoaWUTlq8Vu9XFXZERoYo+HlpqZ0qBw1HXx9siqZ7U9RGZyURERNrHIAgR6YLWFrWkbSKv7PrK2+CdCI6ikEo+Hv5uZ0qBy1EE3dNAiCdF0JXIZCIiIm1jEISIdEFLi1rSPq1c2fU1eOerrPQERBnDFH08/NnOlAKfoxNNUrzJreOnxpuwanGu29sfmclERBR8+E2DiHSBhRfJXVqqUSEieOeLhfOmKf54mGMihYwN9NWkdbedKQUPJYugM5OJiCj4MAhCRJqnpUUtaZ8SV3a9fb6ICt55w1EU8tCRDs08HqPhZjUajlJF0JnJREQUfPhOTUSap6VFLWmfVq7sigzeecq1KKTSj0dza6fQ8fn6pNGI7ERjjomEwSAJ+Yxx1OAhIiJtY00QItI8rSxqSR+0cmVXZPDOEwOLQir9ePD1SXoWZQxDdlqCkLEcNXiIiEjbGAQhIs3TyqKW9MFxZVcEX67s+qMY6lBFIZV+PPj6JL3Ly0kWMs7CedOEjENERMpiEISINC/KKHZRFBkhdtFG2qKVK7uigwNLrslAzszJgwIaIQYJOedMxsrbc7B62fxBbUGVfjy0EnQi8lZ6itnt7jPDcdTgISIi7ePlFiLSPItVbHp8Z5d/2pWSevJyklFcVu/zOL5c2RVdayA7PQEXzk3yqiikko+HI8giYnxuJyB/kCQJS/NnY/naIq8yuFxr8BARkfYxE4SINI81B8hTWriyq1QGRpQxDIlxJkxPGo/EOJNbQQOlHw9uJyC9S50SgxUFmR5ncA2swUNERNrHIAgFFIvVhtrGduyvPY7axnZYrDZ/T4kEYM0B8pTjym5EmHcfc6Ku7GolOOB4PLx9LY32eGgh6ETkq4wZk7Bqca7bz+WhavAQEZH2cSVAuifLMsqrm1FYXINtFY39Us8NBgnZaQnIy0lGeoqZqao6ZY6JhEECRDTaMKhYc8BitaG5tRPW7l4Yw0Ngjolkqr8KXN8TbD12j88XeWXXERyobezwegxRwQHHle6V67d7lF3lzuOh1HYCvoZIbalTYrBm2XxUVLegsLgGWysa+n2vCDFIyEpPwMJ505CWEsvvFUREOsQgCOlaVV0rnty4e9gFht0uo7isHsVl9UiKN2Fp/mymrOpQlDEM48cZ0dJm9Xms8aYIRRdRDMr512jvCaOZGm/CEoHvE1qrNeC40u3uY+TJ4yEqyKKX1xADNIFLkiSkp5qRnmr2qgYPERFpG4MgpFullU0efdmubezA8rVFWFGQydRVnbFYbTjW7nsABACOtVthsdoU+RLLoJx/efqe4GCQgOyZkxW7sqtkBoa381HqSrevQRatv4b0EqBxFwM5o4syhvExISIKMAyCkC5V1bV6tdixdvdi5frtWLU4l4tPHWlu7YQsYCsMAMgy0NJmFf6llkE5//L2PQEAwsJC8OMLzlD0PUHJDAxvKHml29sgi9ZfQ1oP0Lgr0AI5REREnmIQhHRHlmU8uXG31x1DrN29eGrjbqxeNp9f8HRC691hGJTzL1/fE7pUek/Qaq0BJa50expk0fprSOsBGncFSiCHiIjIFwyCkO6UVzf7VGQQAL5t7EBFdQvSU82CZkVK0nJ3GAbl/E9P7wnBWGtgtCCL1l9DWg/QuCtQAjlERES+Yotc0p3NxQeFjFNYUiNkHFKeOSYSBoOYxU2I4O4wIhfg5B29vidEGcOQGGfC9KTxSIwzBWQAxB1afg2JCtDIovbzecnXQE5VXasyEyMiIvIDBkFIVyxWG7ZWNAgZa2t5AyxWm5CxSFlRxjBkpyUIGSsrPUHoYlOvC/BAwfcE/dPya0jLARp3BUogh4iISBQGQUhXmls7++2h94XdLgtpuUrqyMtJFjLOwnnThIwDcAGuBXxP0Detv4a0HKBxVyAEcoiIiERiEIR0ResFMkk56SlmJMWbfBpjarwJaSmxgmbEBbgW8D1B37T8GtJ6gMZdgRDIISIiEolBENIVLRfIJGVJkoSl+bO9fg4Yw0OwJH+20MKJXID7H98T9E3LryEtB2jcFSiBHCIiIpEYBCFd0XKBTFJe6pQYrCjI9HjhawwPwYqCTOEdGrgA95zFakNtYzv21x5HbWO7z4sqvifom5ZfQ1oO0LgrEAI5REREovn1G3dnZyfq6+tx4sQJdHd3IyIiAmPHjsWUKVMQHh7uz6mRRjkKZBaX1fs8lugCmaSOjBmTsGpxLp7cuNutfe5T401Ykj9bkRaVjgW4iEVGIC/AZVlGeXUzCotrsK2isd/jZTBIyE5LQF5OMtJTzB5n6vA9Qd+ijKGQJEBEzU3RryEtB2jcFQiBHCIiItFU/USur6/HJ598gi+++AJfffUVjh49OuRxkiQhPj4eGRkZOO+883DBBRfAbDarOVXSsLycZCELHpEFMkldqVNisGbZfFRUt6CwuAZbKxr6LaxDDBKy0hOwcN40pKXECt0C44oL8NFV1bWOGLCy22UUl9WjuKweSfEmLPUiYMX3BH0ZGBQT1XRE9GsoEIKcgRDIISIiEk3xTzNZlvH+++9j48aN2LFjx6DfDXdOQ0MDGhoasHnzZjz66KPIzs7Gtddei/nz5ys9ZdI4R4FMX6rdiy6QSeqTJAnpqWakp5phsdrQ0mZFZ1cPIiNCERttVC2gwAX48Eorm7By/Xa3r0bXNnZg+doirCjIRMaMSW7fj5LvCRarDc2tnbB298IYHgJzTGRABqvUMlpQzBeiX0OBEOQMhEAOERGRaIoGQd5++22sXbsWtbW1AAYHPUwmE6Kjo2EymRAVFYWuri5YLBY0NjbCYrE4j+vp6UFRURGKioowbdo03HnnncjLy1Ny6qRhjgKZy9cWeZXqq0SBTPI/x/vLcMFVpTAoN7SqulaPAiAO1u5erFy/HasW57qdESL6PUHJ7TvBzNOgmCeUeg3pPcgZCIEcIiIi0RQJgnz99dd4+OGHUVFR4VyQREREYM6cOcjOzsZZZ52F6dOnY+LEicOOcezYMezZswdlZWUoLi7GV199hZ6eHnzzzTf45S9/ib/+9a94+OGHMXPmTCX+BNI4R4HMx178At09drfPCw81KFIgk9SnlYUqg3KDybKMJzfu9nqxa+3uxVMbd2P1svluPy6O9wRPF9kDi+aqsX0nGHkbFHOHkq+hQAhy6j2QQ0REJJrQIEhPTw+efvppvPjii+jt7YUkScjMzMRPfvITXHTRRYiIiHB7rAkTJiA3Nxe5ubm444470NbWhs2bN+Ott95CWVkZ9uzZg2uuuQbXX389li1bxkKqwcrT77yBs84MalpbqIpagAeK8upmn7c7fNvYgYrqFqSnul8PyteiuWpt3wk2vgbFRqL0aygQgpyBEMghIiISSWiL3Kuvvhp//etfYbfbkZeXh3feeQcbNmzAZZdd5lEAZCjR0dHIz8/Hq6++ildffRUXXXQRZFnG3/72N/z0pz8V9BeQXjiuKnbb3M8CAYBumx0r129HVV2rMhMjxZVWNmH52iK3v9A7FqqllU2KzsuxAE+KM7l1/NR4E1Ytzg3IxfPm4oNCxiksqfH4HEfR3JW35yBn5uRB7XNDDBJyzpmMlbfnYPWy+f0yQHzZvqPme4roNsNKExEUG4paryGtteb2lCOQ422RVC0EcoiIiEQSmgmyZ88eZGZm4r777sPZZ58tcuh+Zs6ciWeeeQb79u3D7373O2zdulWx+yLt8UeqPWmDmnUmvCXDvZokdi9rl2i9UKfFasPWigYhY20tb4DFavP47/O0aK4e3lO0sv3LG6KCYoB6nZ8G0lJrbm8wW42IiOgUoUGQZ555BhdddJHIIUd05pln4sUXX8RHH32k2n2S//kr1Z78S+sLVU+3Uhw6csLtrRR6WgA3t3YK6UQB9G1rammz+hTkiTKGjXq+1t9TlNz+pXRQTWRQzCBJ+Ov9C2COiRIynqe00prbW3oP5BAREYkiNAiiZgDE1YIFC/xyv+QfhcWep8gPNw6DIPqh5YWqkhkqWqt/MhrRdR86u3qEjjcUkdt3RD+3lKhTomZQTWhQTJbR2SW+rogntNKa21t6D+QQERGJoGiLXCLRLFYbtpWLSrWv9yrVnvxDqwtVJTNU9Fio09u6A8OJjFD2Y0oL23eGo0RwTe2gmh6DYu5yJ8tIi/QeyCEiIvKV0MKoREprbu2EoIuKsMtAS5tVzGCkKCUWqqKIzFBxpadCna7MMZGDipF6K8QgITbaKGSs4SixfUcEUcE12aX2jD+KCustKBZsooxhSIwzYXrSeCTGmRgAISKioOC3IMiJEydw5MgR1NfXu/1/otaOLqHjHW9nEEQPtLpQBZTphKLEAlgtUcYwZKclCBkrKz1B8UWZVjMVRAfX/BVU01tQjIiIiAKfqpdUdu7cib/85S/YvXs3Tp486dG5kiRhz549Cs2M9EJ0KrTV5t/95eQerS5ULVYbSsrFBGhLyk5tz9Jy/RN35OUko7jM98dl4bxpAmYzMq1mKogMrqWlxPqtqLAjKCbi+aBGUIyIiIgCn2qZIH//+99x44034vPPP8eJEycgy7LH/ycSnQptDBO7ACJlaHWh2tzaCVFvTbLL9iwlskvUlJ5iRlK8yacxpsabkJYSK2hGw9NipoLo7V879h5RZMuWu/Jykn26bwc1gmJEREQU+FTJBKmsrMTjjz8Ou90OoC+rIzExEWazGSEhXISS+2JMEULHGz+OqdV64FioitgSIzKlXokMFS0X6nSXJElYmj8by9cWefUYGcNDsCR/tiqdKbSYqSB6+9e7Rd8IGcvbosKOoJgvgRi1gmJEREQU+FQJgrz88svo6emBJEnIzc3Fww8/jNNOO02Nu6YAY46JhCRByNV3gwTuL9cJLS5UASiSoaZE/RN/bCFInRKDFQWZHtehMIaHYEVBpqptfrW2fUd0cO2r/UeFjONtUE1PQTEiIiIKfKpsh9m2bRsAYPLkyVi7di0DIOQ1vRVdJHG0mFJv7RZco6bLptn6J97ImDEJqxbnur01Zmq8CasW56re3ldr23dEb/8S1lHLh6LCjqCYp3+bP4JiREREFNhUCYI0NTVBkiRcdNFFCA8PV+MuKYAtzBWziL0053Qh45A6tLZQBYC2E93CxgKAtpM2zdY/8VbqlBisWTYfK2/PQc7MyYPqb4QYJOScMxkrb8/B6mXz/bLYdWQqePvYi85UEFmnRNAwTr4E1dQKilmsNtQ2tmN/7XHUNrYLbYlNRERE+qfKt+OwsDBYrVZER0ercXcU4Li/PDgFS0q9Vuuf+EKSJKSnmpGeaobFakNLmxWdXT2IjAhFbLRRExlZqVNicPWC6diwea/H5169YLrQ4I3I7V/nTJ+I0kox22EA34NqjqBYRXULCotrsLWiod9zPcQgISs9AQvnTUNaSqzbr1dZllFe3YzC4hpsq2jsN6bBICE7LQF5OclITzFr/j2AiIiIlKVKECQ5ORnl5eU4dOiQGndHAU6SJPz4gjPwx5d3ez3GVRecwS/COqS1OhNxE6KEj6fV+ieiRBnDNDcnAKiqa8WrH+336txXP9qPjBmThD6/RNUpuSz3dHx1oFlTQTXRQbGqulY8uXH3sIFxu11GcVk9isvqkRRvwtL82dxeQ0REFMRU2Q6zYMECyLKMDz/8EBaLRY27pAAmyzJe/mCfT2O8/ME+tl3WKS3VmUiM8217jisJwJRJYwFos/5JIJNlGU9u3O11PRZrdy+e2rhb6HuKqO1fc86K03QdpShjGBLjTJieNB6JcSaPxy+tbMLytUVuZwbWNnZg+doilFY2eTNdIiIiCgCqBEGuv/56TJo0CR0dHbj//vu5+CSflFUdRWOLb8G0xhYLyquaBc2I1KaVOhNRxjB853Qx26q+kxLrXABqsf5JICuvbvZpex0AfNvYgYrqFkEzElunJFCDalV1rR5nhQF9QauV67ejqq5VmYkRERGRpqmyHSYqKgp/+tOfcNNNN+H9999HbW0tbrrpJsyePRsTJkxAVJTYlHIKbBv/7V3K+qBxPqzEzDMmChmL1KeVOhP5F03Hr/681fdxfjDDeZtbvtS1ufigkHEKS2qQnmoWMhYgbvtXINRRslhtaG7thLW7F8bwEMRGG4Vk76xeNp+vEyIioiAjNAhy1llnjXqMLMvYs2cP7r33Xo/GliQJe/bs8XZqFCAsVhu+/kbM1daK6hZYrDZN1icgz/izzsTM1ImIj43yKTspPjaq3+JZlmW8/skBn+b1xicH8P3ZU7jAG4XFasPWigYhY20tbxD+nuLY/jVSzQtXU+NNWDKg5oVeiwqPVOxUkgBfk0od2TsiA1dERESkfUK3w8iyPOL/ATi/RI127HDnU3A7dMS3lPWB6ppOCB2Pgo8kSbj3xrkIC/Xu7TQs1IB7b5zbb4Gpxe0Zgaq5tVNI0VCgrwBnS5tVyFiuRGz/cmSVeLq9RqmiwqOpqmvFnU9swf3PlqCkrGHQv5GorwSFJTViBiIiIiLdEJoJMnnyZJHDEQ1y5JjYwrpHjlkwPWm80DEp+KROicEDN5+Hx178At09drfPCw814Fc3nzdoganV7RmByNvtFMPp7OoROp6DiO1fIrJK1FBa2eRVrQ9vKJG9Q0RERNomNAjyySefiByOiEg3MmZMwm/vOh9/fHkXDh0ZPcMoKW4sll577qAFpta3ZwQabwuPDicyQvlSW75s/3JklVRUt6CwuAZbK/pnWYQYJGSlJ2DhvGlIS4lVfQuMt8VOveXI3uFrhIiIKHioUhiVSJT4WLFFdOMmsCgvieNYYL79+TfY9Gn1kFsjYqONuOJ7Kbj8/NNhMAzeQqPE9gwu8IZnjomEwSAJecxDDBJio40CZqUsrRQVHsjXVsXeUip7h4iIiLRJaBDk3//+N7Kzs2Ey+dbakWg4UyaJe25JAKZMGitsPKKqutZRtxq0tFnxwttf48PttVg6xFYDvWzPCBRRxjBkpyWguKze57Gy0hM0G3Aa2F3FHBPpzCjRypxF1MLxhhrZO0RERKQdQj/57777boSEhCAtLQ05OTnIycnBrFmzEBIiNt1YLe3t7Vi4cCGamppw2WWX4Yknnhj2WLvdjrfeegubNm1CZWUlLBYLJk6ciNmzZ+Oaa67B3LlzR70/EWMEuihjGNJOj0WFgA4x30mJ1cyXf9I/T+sY1DZ2YPnaIqwoyETGjEnOn+txe4be5eUkCwmCLJw3TcBsxBmpu4rBICE7LQEXzE1E3PhIdNns/YIj/iCqFo4n9JK9Q0REROII/3Zst9tRVlaGsrIyPPvssxgzZgzOO+88zJs3D7m5uZg6darou1TMr3/9azQ1NY16XEdHB+644w5s376938/r6+tRX1+PwsJCFBQU4L777lN0jGBxzUUz8Ks/l/g8Tv4PZgiYDZH3dQys3b1YuX47Vi3OdWaE6HV7xnCZBv7mzrzSU8xIijf5lIUwNd6EtJRYX6crzGhZSXa7jOKy+kHBH0dwJC8nGekpZtVqgoisheMJLWXvaPU1REREFGiEBkFSU1NRXV3dr53tiRMn8MknnziLpk6ePBk5OTnIzc3V9NaZjz76CG+//faox8myjCVLljiDF7m5ucjPz4fZbMbevXvx/PPP4/Dhw1i3bh0mTJiAW2+9VZExgsnMVDPiY6PQ2OJ9p5iE2DHsmhFA/Ll48LWOgbW7F09t3I3Vy+ZDkiRdbc9wJ9NA7cW0N/OSJAlL82dj+doir/4djeEhWJI/W/UiosPxpbuKa3AkKd405JYtJYisheMJf2fvaPU1REREFMiEBkHeffddtLa2YufOndi5cye2b9+OyspK9Pae+iJWX1+P1157Da+99hoMBkO/rTMZGRlDFgpU27Fjx/DQQw+5dew777yDoqIiAMCiRYuwatUq5+9mzZqFSy65BNdddx2qqqqwZs0aXH755YiPjxc+RjCRJAnXXnwm/vjybq/HyL94Br9Q6pxWFg8i6hh829iBiuoWZ2BOD9szPMk0UHMx7e28UqfEYEVBpsfBA2N4CFYUZKreRnY4IrurDLdlSxTX4GVjy0nh44/G39k7Wn0NERERBTrhEYeYmBgsWLAA9913H95880188cUX+Mtf/oL/9//+n7M+iCzLkGUZvb29zm0z119/PTIzM7F48WK8/PLL+Pbbb0VPzW2PPPIImpubMWHChFGPXbduHQBg7NixuPfeewf9PiYmBo888ggAoKurCxs2bFBkjGAiyzJe/+SAT2O88cmBfhlLpC9Vda2484ktuP/ZEpSUNQy6guxYPNz/bAnufGILqupaFZuLqDoGhSU1ztuO7Rm+UHKBV1rZhOVri9wO/jgW06WVo28v9Oe8MmZMwqrFuW4/9lPjTVi1OFeRAIE3lOiu4tiyJeo1JMsyyqqOYtVL25H/wHtY/Pst+OXTn+H3f98lZHx3+Tt7R6uvISIiomCgeNrF2LFj8d3vfhe//OUv8corr2Dnzp1Yt24dFi9ejMzMTERERDiDIo6tM7/+9a/xwx/+EBdeeCEefPBB/Pvf/0ZHhzoV4zdv3oz3338fBoMBv/rVr0Y89tChQ9izZw8AYP78+YiJiRnyuDlz5mDatL4rsu+//77wMYKNyCvvpD9aWjyIrGOwtbwBFqsNAJzbM7wtkqrkAs/X+idKBaREzcvR5njl7TnImTkZBkP/xzDEICHnnMlYeXsOVi+br6kr80p1V3Fs2fI1cDxa8FIt/s7e0epriIiIKFio3jbAaDQiOzsb2dnZAACbzYaysjLs2rULO3bsQGlpKU6cOAEAOHz4sHPrTEhICCoqKhSdW3NzMx599FEAQEFBAc4555wRj9+169SVq6ysrBGPzczMRE1NDQ4fPoza2lokJSUJGyPYiLzyzrog+iKyAKkIIusY2O0yWtqszhoeWtyeIbr+idB5vSxuXpIkIT3VjPRUMyxWG1rarOjs6kFkRChio42aLVapZHeVgVu2POVLnRKRpsabsMSP20q0+hoiIiIKJn4vwBEWFoZzzz0Xt956K55//nns2LEDb731Fn72s585t6M4ts4o7aGHHsLx48cxbdo0LFmyZNTjq6qqnLeTk5NHPDYxMdF5+8CBU1s5RIwRTJS68k7aJ2rxIHIblOgFXWdXT7//1tr2DK1mYb2/7SBqjygzryhjGBLjTJieNB6JcSbNBkCaWy0oKfe9jsxIXLdseUJknRJ3DEje0VT2jlZfQ0RERMFE9UyQobS0tOCLL77Ajh07sHfvXlRWVsJqtao6h02bNuGjjz6CwWDAqlWrEBERMeo5jY2NztuTJ08e8diEhIQhzxMxhrsc7Xa9UVlZ6dV5oil55Z20TYkCpL7ydrvKcCIjBr8lO7ZnVFS3oLC4Blsr+m8jCDFIyEpPwMJ505CWEqvo1WEtZmGVVjbhz2+UCRlLb9lh/YoDlzdC6TJHJWX1KDtwFDGmCLc7MClRp2QkU+NN+O2duTjW3qXJ7B0tvoaIiIiCjV+CICdPnsTWrVtRUlKCL774At98802/3zuu1EqShBkzZjhb6irlyJEj+M1vfgOgbxtMRkaGW+e1tbU5b48ZM2bEY6Oiopy3XeubiBjDXW+88QbWrFnj8XlaovSVd9IuLS4ezDGRQsYBAAlAbLRx6N9pYHuGEllYvs67qq4Vv1n3BUSVlhA1LzWM1llECbIM3P/nEgDud2BSqk7JUBy1cMZEhmNMZLgq9+kJLb6GiIiIgpFqQZB9+/bhs88+w+eff47S0tJ+21tc09PNZjPmzZvnDHzExirfvu5Xv/oV2tvbkZycjJ///Odun9fd3e28bTQOvXgZ6veu54kYI5ioceWdtCcYFg/uruOjjGF+mbvWsrAcGQZdNruQOYmalxq0UF/D3fatStYpceXvYqfu0NpriIiIKFgptgJsb29HUVERPv/8cxQVFaG5udn5O9egR3h4OGbPno2cnBycf/75OPPMM5Wa0pBee+01fPbZZ85tMKMFIlyFhJxakI+Wgu76NxsMp0qxiBgjmJhjImEwSEK+SIYYpGGvvJO2aHXx0NzaKWBGp2h5UaO1LCylMgy0nh2mdn0Ndzg6MK0oyETGjEmwWG1obu1Ea0cXtpaLCV6OxN/FTt2ltdcQERFRsBIaBCkrK8Nnn32GoqIilJeXw27vu0I3sBDh6aefjtzcXOTk5OC8887zKPAgUn19PR5//HEAwE033YTZs2d7dL7r9hSr1Yrw8OHTb7u6upy3XY8TMYa7rrrqKmdXHk9VVlY6O+f4U5QxDNlpCSgu870AYFZ6gmYXnNSfVhcPWp2XErSWhaVUhoGWs8PUrq/hCWt3Lx578QucmTwBFd+0KN7+Vs1aOKJo7TVEREQUrIR+gl599dXOLyKugY/o6GhkZ2cjNzcXubm5iI+PF3m3XpFlGffffz9OnDiB5ORkt7rBDORaw6OzsxPjxo0b9liLxeK8HR0dLXQMd02ePHnU4qt6kJeTLCQIsnDeNAGzITVodfGg1XkpQUtZWCK3R7nSenaYmvU1vNHdY0dZVfPoB3rpnhvmIG5ClOaKnbpLS68hIiKiYKbYN+65c+ciJycH8+bNQ3p6uuau0vzzn/9ESUlfgbcbb7wRNTWDW/81NTU5b7e3t2Pv3r0A+uqWTJw4Eaeddprz9w0NDYiLixv2/hoaTn1hdz1OxBjBJj3FjKR4k0+LganxJqSlKF9vhsTQ6uJBq/NSgpaysERuj3Kl9ewwtepraFVywjgkxrnXLlqLtPQaIiIiCmaKBUEqKysRFRWFiIgIGI1GTJ8+Xam78sqXX37pvO3ONo9PP/0Un376KQDgzjvvxF133YUzzjjD+fva2lrMmjVr2PMPHTrkvJ2amuq8LWKMYCNJEpbmz8Y9qz+HrcfzoohhoQYsyZ+tucAcDU+riwetzksporKw5pw5Cftrj8MYHuJ2q1VXSm0H0XJ2mFLZL3qh9SChu5jJSERE5H9CgyCJiYnOhXp7ezs+++wzfPbZZwD6sicc22HmzZuH8ePHi7xrv5g1axYkSYIsy9i5cycuv/zyYY/dvn07ACAhIQFTpkwROkaw8jaEwdCHPml18aDVeSlBRBYWADz9zy+dt91ttepK9DYkQPvZYUplv+iFHoKE7mAmIxERkf8JbTHy4Ycf4sMPP8QDDzyA73//+zAajZBlGbIs4+jRo9i0aROWLVuGnJwc/PjHP8aTTz6JnTt39muXq5bHH38clZWVI/7/448/dh5/2WWXOX9+1113AegLRjgyNz744AOcOHFiyPvauXOnc7vNxRdf3O93IsYINo7igN1eZIEAffvWn9q4e1DBXtI2x+LBF0osHrQ6LyU4srBEBiEcrVbvf7YEdz6xBVV1raOe49iGJEpEeIjms8O0WAxVTXoIErrD19eQ8b/P1c6uHtQ2tmN/7XHUNrbDYrUJnikREVHgEt5nNTExEddddx3+/Oc/Y/v27Vi3bh1uvvlmnHHGGc6AiN1ux9dff42//OUvuOGGG5CZmYnFixdj48aN/bZ86MENN9wAAGhtbcVDDz3k7Ijj0NbWhoceeggAEBYWhuuvv16RMYKJiOKA3zZ2oKK6RdCMSA2OxUNYqHdvW0ptg3LMK9zLeYXrbHtW6pQYrCjIVCQbw9FqtbSyacTjHNuQRDAYJNxfkOm39qoWq82txawSj7de6CVI6C5vX0PG8BDkXzQDr328H/kPvIfFv9+CXz79GRb/fgvyH3gPj7+0A2VVRxngJyIiGoWirQjCwsKQnZ2N7Oxs3HPPPThy5Ag+//xzfP7559i2bRva2toAACdPnsQnn3yCTz75BEBfIMWxdSYrK6tfG1mtWbhwId58800UFRXh3XffRWNjI2688UbExcWhsrISzz33HA4fPgwAuOuuu5CYmKjIGMFEVHHAwpIapKeahYxF6tHqNihvlx16XK5kzJiEVYtz8eTG3cK7lVi7e7Fy/XasWpw7YmBC1Dak2xfNRMaMST6P4wlZllFe3YzC4hpsq2jst81luO1BIovw6olRB1k63vD0NZQQOwYyZKx7d8+Qv3dkVBWX1SMp3oSl+bP9FtgjIiLSOkn20yUDu92Or776yhkU+frrr/tlQDi+8ISGhmLWrFk4//zzceutt6o6x7q6Olx44YUA+rbDPPHEE0Med+LECdx2223YsWPHsGMVFBTgvvvuG/aLnIgxlLRz505cd911zv/+xz/+gTlz5qg+D4vVhvwH3hOyEDAYJGz89SUBsc88GMiyjDuf2OLzXvrVy+YLfQ1pdV5qkGUZFdUtKCyuwdaKBqEL9NEeExGPe1LcWKz5vwtUfdyr6lrdXvgOXMw+/tIOIYEfvTCGh2BFQabqQSo1jfQaCjFIyEpPwPTEGLz8wT502dzfAhoMjx0REQUHJdahimaCjMRgMCAjIwMZGRm4++67cfz4cWzduhU7duzAjh07UF1dDVmWYbPZsGPHDuzcuVP1IIi7xo4diw0bNmDTpk14++23sW/fPnR0dGD8+PHIyMjAddddh6ysLMXHCAYiiwPa7TJa2qwMguiEyG1QIjOAtDovNUiShPRUM9JTzbBYbWhps/bVKjjSjqdf+dKnsUd7TBzbkJavLfKqXoYxPARLrz1X1QBIaWUTVq7f7vZ8HduDHItZUdkvejA13oQlQZDNMNxrKDIiFLHRRtQ3n8TytUUeBUAA9zOqiIiIgpHfgiADjR8/Hnl5eViwYAH27t2Lzz//HK+88gpaWlr8tr91ypQpqKysdOtYg8GARYsWYdGiRV7fn4gxAp3o4oCdXT1CxyPlaHUblFbnpbYoY5gzoPjmliohY472mDhqK3gSWABOXSVXc3FYVdfq8TyB/otZUd15tMqR+bBw3jSkpcTqLjPKV66vIeBUEXBvP/es3b14auNuXWaZERERKcnvQZBDhw5h165d2L17N8rLy3HgwIF+3WIcAZDQUL9PlTRAdHHAyAg+r/TAYrVha0WDkLG2ljfAYrUJyQDS6rz8Se3HxNPaCv7IMBC5mPUl+0WLDBLw6/+dh/HjjIiNNqr6/LdYbWhu7YS1uxfG8BCYYyI19foL5iwzIiIiJam6Auzt7cWePXucQY/du3ejpeVUhw7XjA9JkjB9+nTMmzcPWVlZyMzMVHOqpFHmmEgYJEDEjhiDQUJstNH3gUhxWt0G5Y95aX3h5o/HJHVKDNYsmz9qbQV/ZRiIXsx6k/2iVdkzJ2PmGRNHPU7U896borT+wiwzIiIiZSgaBDlx4gRKS0v7ZXpYrVbn7wduc5kyZYqzm0xWVhYmTJig5PRIh6KMYYgxReBYe5fPY8WMDdfU4pGGp9VtUGrNS08LN3/9W41WW8Gfr3XRi1klu/OobeG8acP+TvTzfrSitFrqsMIsMyIiIuUIDYIcPnzYmeGxa9cuVFVV9Qt0DAx6jB8/HllZWc7AR7C3fqXRWaw2IQEQADjW3sUvhrqhzbagamzP0tPCDdDGlrWBtRX8SanF7GjZL3owNd6EtJTYQT+3WG3YXdmElwr3oLHFMuS5nj7vfS1KqzatZr8REREFAqFBkAsvvLDf1ZiBQY/IyEjMmTMH2dnZmDdvHs4880yRd09BoLm1U+h4/GKoD36qjTwqc0wkDAZJyGIlZIjtWXpbuAHKPyZ6o+RidmD2S3NrJx594QscOTZ04EBLjOEhWJI/2/mdwTXrY2t5g0ev+dGe9yKK0qodWNRq9hsREVEgMCgxqCzLkGUZoaGhyMjIwB133IG///3v2L59O55//nncfPPNDICQV1o7xGSBOBxvt45+EPmdv7d4DCfKGIbstAQhY2WlJ/QLyPm6cKuqaxUyL08p+ZjokVqL2ShjGJLix+G+m+YKz8ZxdWPeWQgP8+2rw8DuPFV1rbjziS24/9kSlJR5FgBxGO55L6oordpd6rSQUUVERBSohAdBUlNTceONN+LPf/4zvvjiC2zcuBF333035syZg7AwfX+ZJf8TfTXLatN/YcFg4K822e7Iy0kWMo5rbQS9LtwclHhM9ErtxayjbbBSgZB/f/Etum12r88PCzVg5R05zoyN0somLF9bJKS2yVDPe5FFadXkyKgSIRAyqoiIiEQSGgQpLi7GO++8gxUrVuD73/8+xowZI2zskydPChuL9Ev01SxjmHJXTEkca7fg4FeXTdhY6SlmJMWbfBpjYG0EvS7cHJR4TPTKH4tZR+FUX/8NhjJcjQ532XrssHb1Bfe8zXYaycDnvciitGpiRhUREZFyhAZBYmOH/sJaWVnp07hbtmzBpZde6tMYFBiMEWKDFkamCOvC0eNia8E0CRxPkiQszZ/t9ZX3gbURAP0u3ByUeEw8YbHaUNvYjv21x1Hb2A6LVVzQy1P+Wsw6Cqc+eMt5Qu5bpMKSGp+znUYbH1CmKK2amFFFRESkDFVWgDfddBPWr1/vcR2QY8eO4bHHHsN7772n0MxIbzS8K4IU1H6yW+h4JzrFLmYcWxAee/ELdPe4v1UgPNTQrzYCEDitMR2PiadX+gfWi3CXltsI5+Uko7is3udxPF3MSpKEuWfHI2fmZCH3L8rW8gbs2NuoWHtfx/Ne7x1WHBlVvjxOgZJRRUREJJIihVEHam1tRUFBAfbt2+f2OW+99Rby8vLw3nvvaboeAKmrS/BVQysr5uuCKSpc6HhjI8WO5+Tp2nqI45VYuPmLp9sypsabsGpxrsedbQYW1hz4+Dnaqd7/bAnufGKL6kVj/b09SFRGgSh2u4x3P1cuS8nxvNd7hxV/Z1QREREFKlWCIADQ1taGm266CXv27BnxuLq6Otxyyy1YsWIF2tranAGQvLw8NaZJGsfCqMFJdG0D0eM5aht4WjCy22Yf1NFC7wu3gRzbMlbenoOcmZMH1ccIMUjIOWcyVt6eg9XL5nucAeJpYU1HO9XSyiaP7scX/l7MigjCxE+I8un8gb48cFToeAN1dvUERIcVbwvduptRpaWtY0RERGpR5RM9Ly8PmzdvRltbG372s5/hhRdeQFpaWr9jZFnG+vXr8cwzz8BqtTqDH4mJiXjooYeQm5urxlRJ41gYNTiJ7mwwYVyEsLFEdXJZvWw+JEkKiIXbQJIkIT3VjPRUMyxWG1rarOjs6kFkRChio41ebzHwtY3wqsW5HgddvKX29iBXjiDM8rVFXj1PjeEhuOnSs/HbDTu9nsNASid4Op5bBoMkJLPKnx1WHBlVT27c7Vawb2q8CUvyZw/7nNHy1jEiIiI1qPLt+A9/+APGjBmD1157DW1tbbj55pvxwgsvID09HQCwb98+/OpXv8LXX3/tDH6EhobilltuwR133IGICHELFtK3GJPY58L4cWwbqAcWq9hshs4ucdkWIju5pKea+7qJSICIHTEGDbbGjDKGCamrIDr4pAbRi9mBHHUwrN29MIaHwBwT6XysfQ3CzJg6XlhAQdQ4w3EELBxFaUXUQ/F3hxVHRlVFdQsKi2uwtaL/tq8Qg4Ss9AQsnDcNaSmxkCRpyOdDffPJEZ9/jq1jxWX1SIo3YakHzz8iIiK9UCUIIkkSfv3rX2PMmDFYv3492tvbcfPNN2Pt2rUoLi7GCy+8gN7eXmcAZM6cOXjkkUeQkpKixvRIR8wxkZAkMVcRDZL4DANShpa3iIjs5JKeakaUMQzjxxmF1PIYb4oI2NaYooNPavFmMTsST67q+xqEERVQOOcMM0orldsO4xqw8FdRWiW4k1E10vNBkvrGcDcA5dg6tqIg0+M6PURERFqmap70fffdh6ioKPzpT3/CiRMncNNNNwGAM/gRExOD//u//8NVV12l5rRIR6KMYcj6Tjy2VjT6PNZ5afEBu0AMNFrdIqJUC85j7WKKmR5rt/qtO4zSRAef1CRqe1BVXatXV/W9DcKICihclns6vjrQrFg2iGvAIlA7rAyVUTXa80GW4XGheX9sHSMiIlKa6pvF7777bphMJvz2t7+FJEmQZRmSJOGKK67APffcg/Hjx6s9JdKZs0+PFRIE+c40dRc+5D1zTKQm9/Yr0clFlmVh9RJkGaq39VRDoLQRBrzfHlRa2eTR1paBV/W9CcKICijMOStOWFbJUOO7BixE1EPRQ4cVT58PnvDH1jEiIiIlqdYdxtXPfvYzPProo84P0/DwcFx++eUMgJBb9h48pqlxSHlRxjBkpcULGSsrTdzefiW26Wh5649WBFIbYW/4WhDWtRtRlDEMiXEmTE8aj8Q404ivDZFdbpRo2ztcwELpDiv+5u3zwROOrWNERESBwC9BEAC4+uqr8fvf/x6hoaHo7u7GHXfcga1bt/prOqQTFqsN2wRkgQDA1ooGtgPUkbOSJ2hqHECZbTpa3fqjJcEcKBJVENbTbREOogIKItr2jjT+QI56KO7e59R4E1YtztV8LQxfnw+eKCypUfw+iIiI1CD02/GFF17o8TkhISHo6elBZ2cn/vd//xcTJ04c8jhJkvDRRx/5OkXSOSWuAAfaVoFAtbdGTObOnoMt+NH3xBRd1uo2HQcJgVn8N5gDRVooCOtrgVVH8c6YsRGohW9/y1DjD0d0UVotEPF8cJe/t44RERGJIvSb3+HDh7360uA4x2azob5+8B5hR90QomC+AhzMLFYbtn0tJgNoW0WjsC/ySrTgFJmdpFwTUv/SevBJtOZWC6rr2tBh6ca/v/hWyJi+FoT1NqAwWvFOdxkkCdkzPQ9YiCpKqxWiCgS7gxcOiIgoUAi//OVtii2RO4L5CnAw03IGkOgWnM2tnT6P5SoQFy1KBJ+0xm634+3Pv8Fbn1bjmAI1S0Rc1fc0oCCieGf8hCgUXHo2MmZM8vnfzduitFohskCwu3jhgIiIAoHQFeC+fftEDkc0SLBdAaY+Ws4AEt2CU8t/qwgWqw3NrZ2wdvfCGB4Cc0ykVwtR0cEnLdmy6xBWv/olbD12xe5DdDBwtICCr8U7zznDjJ8umKGbbSpqEBkcdhcvHBARUSDgpxnpSpQxDFnfiUdJue9Xv85Li9f1VcBgouUMINEtOLX8t3rLUQOisLgG2yoa+y3cDAYJ2WkJyMtJRnqK2e0FrojgU1ioAZERYh9vbzmCQ4XFNdhcclCV+1QrQCaieGdrRxcDIAOoUQx1IK28XoiIiHzh/2/HRB46a9oEIUGQs5NjBcyG1KD1DCBHx4zH1n2Bbpv7V+/DwwyDOlpo/W/11Gg1IOx2GcVl9Sguq0dSvAlL3ShwCfgefAIAW48dy/9UjBUFmX7pAjJScEgNagXItFDMNRCJDpi6o7NL/cALERGRaEJb5JaVlYkczm3l5eV+uV/yj70HxXQJETUOKc9RA0IERWtAeLqGHeJ43fytbiitbMLytUVuL4BrGzuwfG0RSiub3Dre23atrqzdvVi5fjuq6lq9HsMbVXWtuPOJLbj/2RKUlDWoHgBRM0AmqngnW7T25wiYqklr2+uIiIi8ITQIcs0112D58uU4cuSIyGGHdfToUdx///346U9/qsr9kf9ZrDZsqxDTJWRrRYPQThykrEvmJQsZJy9bzDiuHPUOuj2s4dDdYx9yAZ6XkyxkXv6sd+FtDQhPgxIZMyZh5R05CAv1/uPM2t2LpzbuVq2wt6fBISWoFSATWbzTUcyV+ogMmLpLC9vriIiIfCU0CDJp0iS89dZb+OEPf4g//OEPOH78uMjhnY4cOYLHH38cP/jBD/DGG29g0iT105jJP5ToEkJ6oc3OU77WOxhqAe6od+EL12KrarBYbahtbMf+2uP4tqEdf/jHLqGPyUg6u3p8LiLq2G6hNF8LhIqiVoCM79nKEhUwdYcWttcRERGJIDSk/8477+Dhhx9GYWEh/vrXv+Lvf/87fvjDH+LHP/4xzj33XJ/GttvtKCoqwltvvYUPP/wQvb29kGUZF1xwAVauXCnoLyCtC/TOGTS890q+FTLO5q0HMfOMiULGApSpdyC62KpSlKxp4UkNCJHbLZSsOSGiQKgIagbI+J6tLBEFgt3l7+11REREoggNgphMJvzhD3/AJZdcgpUrV6K+vh6bNm3Cpk2bEBcXh+9+97vIzs7GmWeeieTk5FG/oNfU1OCrr75CcXExioqK0NraCqDvi+TEiROxfPly5OXlifwTSOMCsXMGjU6JlHpRX+aVWoA76l14mjVgDA8ZVGxVCaMVPBXBnaCElp8bA4kImPlKrQCZ6/1peTy9E1Eg2F1abCdNRETkDUVWgAsWLMD555+PdevWYd26dWhra0NjYyNee+01vPbaawCA8PBwTJ06FdHR0TCZTIiKikJ3dzdOnjyJI0eO4PDhw7BaT6W9OtKix40bh5tvvhkFBQUwGpmWGWwCrXMGuUeJlHoRC12lF+AZMyZh1eJcPPnybtQeGX3xPDXehCVudlfxRWllkypbOtwJSmj1uTEUUQEzb6kVIHMl8j0bAFa9tAO/vO5cVf8GrfM2YOoJtbfXERERKUmxy+ARERG47bbbcP311+Of//wnXn31VXz77al09q6uLhw4cGDY8wfuBU9OTkZ+fj5+8pOfICoqSqlpk8Y5CsEVl9X7PBZTe/VDqyn1ai3AZTfrodhVKOypZk0Ld4ISWn1uDCQyYOYNtQJkA4l8zwaAuqYTWL62yG9tjbXKGTBVIDtL7ewhIiIipSm+F2Ds2LG45ZZbcMstt2DXrl34+OOP8cUXX6CyshI9PcN/2QwNDUVaWhrOO+88XHjhhZg5c6bSUyWdyMtJFvKFmqm9+qHVbVBKL8A9zbg4dETZBaI/alqMFpTQ6nNjIJEBM3eFGCRkpSdg4bxpSEuJ9dsiVtR7toOjg9CqxbnMCHGROiUGa5bNR0V1CwqLa7C1on/rZYMkARI8eh76I3uIiIhIaaoWRDj33HOdBVK7u7tx6NAhNDQ0oKOjA93d3TAajRg7dixOO+00JCYmIiSEe39pMBGF4Jjaqy9a3Qal5ALc1xazSiwQ/VHTYrSghDkmUth9SYBiW+TUChxFjw3Hg7dkITIiFLHRxhGzaCxWG5pbO2Ht7oUxPATmmEhFsuOiIkIhSYDIRCVHB6HVy+YzQ8GFJElITzUjPdUMi9WGljYrOrt6nM+H+uaTbmeL+Ct7iIiISGl+qwoZHh6OlJQUpKSk+GsKpFN66ZxB4mh1G1SUUexbaGREX1BFVNtd0QtEtWtaqF23R8k8DbUKev7kgumYnjR+2N+P1NHHYJCQnZaAvJxkpKeYhTx3ZFnGk6+UCg2AOHjSQSgYRRnDBr3XjZYtIip7SK0AGxERkTfYGoN0KXVKDK5eMB0bNu/1+NyrF0znlS0d0uI2KItVbP2Izq6+oIcSbXd95Y+aFmdNmzDqwqm5tVPofSpVGFV0gdChhIZImDE1BrWN7UMuOkfr6GO3yyguq0dxWT2S4k1YKiALQOnsIaXbGgei0bJFvH3+qx1gIyIi8haDIKRLVXWtePWj/V6d++pH+5ExYxIDITqjxW1QStUEUartri/8UdPCHXopjCq6QOhQenpl/N/qIgCDF51f7j/q0faq2sYOIfVllM4eUrqtcaAbKlvEG/4IsBEREXnL4O8JEHlK1FaBgR2ISNsc26C83VagxDYoJWqCKNF2VwQ1i6E6fP1Ny6jz10thVKAvm0ktjkXn/c+W4NZVH+GxF7/wur5MVV2rV3NQI3vI0UGI/Ke0sgnL1xa5HaB2BNhKK5sUnhkREdHQGAQh3RG5VYD0JXVKDFYUZHq88FWqw4Fji4MIjvoXSrTdFUGtmhauZBmjzl+JfwOlOLKZ1NbYYkF3j92rc30JGquVPaRU9g6NztcCzt4G2IiUYrHaUNvYjv21x1Hb2C7sQgIRaQu3w5DuaHGrAKknY8YkrFqcq4kOB1HGMGR9Jx4l5b5f7T4vLR5RxjBYu08ImNkpohaIatS0GMpo89dq0dyh+FrU2V+8rS+j1t+oZPYODU+rBZyJPMV6NkTBh5kgpCta3SpA6nJ0OFh5ew5yZk4elAkQYpCQc85krLw9B6uXzVd07/lZ0yYIGefs5L5aJVrd3uEINqjNnfmL2mYismjucLzNZgoLNWBeejzCw/zzsV1YUuPxOWpkD6ndQYhOYVYmBYKqulbc+cQW3P9sCUrKGgYF+l23Ft75xBZmLxEFCF4+IV1RYqsAC+rpk2uHg0NH2lF2oBnHO6wYbzJi5hlmJMaNU2Ueew8eEzbOj76XIjTjQvQCUVSHHne5O38tFs0diSOb6Q//2IW6ptEzfxJix0CGjJLyRhVmNzRvCpCqkT2kdPYODY9ZmaR3pZVNfikYTUT+xyAI6YpeOkGQ8ux2O97+/Bu89Wk1jg1RNyI22ogrvpeCy88/HQaDMlfPLVYbtlWIWZhurTi1yNTq9g4RwQZPZKW5N39ft5koUTR3OK5p1/XNJ4c9ziAB2TMnY3piDF7+YB+6bN7V9BDFm6CxGh1x1Mje0TKL1Ybm1k5Yu3thDA8ZsjWyUvcrOiuTwSxSk6/1bFYtzmWHIyIdYxCEdEWrWwVIXVt2HcLqV7+EbYRijy1tVrzw9tfYsHkv7rp6Fuafmyh8HkplJl0yb6qQhWNedrLvE3Ohdk2Ls5Ld32rk2Gbi6ZdapYrmDmW0NqKuJk8ci/O+E48/vf6V3wMgDt4EjZXMHkqKG6ta9o6WaKF+AbMySc9Yz4aIWBOEdEVPnSBIGa99vB9/fHn3iAEQV7YeO/748m689vF+4XNRLjNJu1+qvK1p4Y09Bz2rFeDYZuJuB5ap8SasWpw7YlqzqE4BnrYRrWs64dOXdCV4EzRWsiPOZeenBN0CxJP6BXf87hPF6hcwK5P0jPVsiEj1y+ANDQ14/fXXkZCQgB//+MeDfv/yyy/jpZdewoIFC3D99dcjIUH9QnykXVreKkDK27LrEDZs3uvVuRs274U5JlJoRohSmUnvlRwUMt7mrQcx84yJQsZy5WmHHm9tq2j0OE3eUTS3oroFhcU12FrRf6EYYpCQlZ6AhfOmIS0ldshFtOgr7d6mXXvRlVYx3gaNlcwe+vLAUfxQcLaTlnlav6Cu6QR++dSnuHHh2Vj0/VShASNmZZKesZ4NEan6qfPcc89h9erV6O3txQ9+8IMhgyCHDh3Ct99+ixdffBEvv/wyVqxYgZ/85CdqTpM0TlR6dbDvJdcbu92O1a9+6dMYq1/9Et/LOE1YjRBzTKSQcYC+3I/YaCMsVhtKysVsHygpq1dsr/1owQYRvE2Tdy2aa7Ha0NJmRWdXDyIjQhEbbRxxvNG2rDiutBeX1SMp3oSlo7Rf9jXtWit8CRp7u1VpNMFUS8LbQJpdBta/uwfvbz2Ie2+cK2zbl5YLOBONhPVsiAhQcTvMM888g6eeego9PT2QZRkHDx4c8rj29nYAfV8cOzs78eCDD+LVV19Va5qkAyLSq9XsBEFivP35N25vgRmOrceOdz73vNWnGhxLiebWTmEZALLcVxtFKY5gw303zcXGX1+CP91zAX7+01lC78PXNPkoYxgS40yYnjQeiXGmEb+serplxdEpoLSyadhjRKRda4GvQWNH9lCCeYygGZ0KkgU6EYG0xhbLqM9VT4hsmc2sTFKTEvVsiEh/VAmC7Nu3D3/+858h//eb/RVXXIHHHntsyGN/85vf4NNPP8Wtt96K0NBQyLKMlStXor5evbaMpG2SJOHHF5zh0xhXXXBG0O0l17tNn1YLGeetT6uEjAP0fZkSqaXNqtu99q7BBpHUSpP3tVPAcLUXRKVd+5OooHHqlBj88trZAmZ0SjDUkhAVSBvtueqpvJxkIeMwK5PUpNfPWCISS5UgyMaNG2G32yFJEh544AE8/vjjmDlz5rDHx8XF4Re/+AV+97vfAQC6urrwj3/8Q42pkg7IsozXPzng0xhvfHLAGZQj7WtutQi72tLSZkVzq0XIWEp8mdL781JrxYvdKWwqqlPAwH87kWnX/iK6fbDooFYw1JIQGUgb7rnqDWZlkh6xng0RASoFQXbs2AFJknDOOefguuuuc/u8vLw8zJ49G7Is4/PPP1dwhqQnrOodfKrr2oSO9019u6CRxAcs9J6gpIU0eVmWUVZ1FKte2o78B97D4t9vwS+f/gyLf78F+Q+8h8df2oGyqqPOhaBS7yki0679QYn2wVoLkmmdEoE0UZ9/jqK33i4qRQfYiNzB9yAiAlQKgjQ09H2Az5071+NzzzvvPABAXV2d0DmRfoms6k360GHpFjpe+4kuIeMok7ShzwWBa8bFnLOGbznrCW/S5D1pIXrnE1tQVdeq2HuK1oqhhocZEB8b5dax7rQP9oYWgmR6olQgTdTnn7cts5UIsBG5g+9BRASo1B2mp6dvv1xERITH54aHhwMAenu19WWS/INVvYOTKSpc6Hjjxnr+XjQUJa5g6ilVd6RWsr4KCzXgO6dP8OgcT1uI1jZ24L61Rei2ifl8GfieIvrf0hfhoQb86mfnYdb0iT61D/aVxWrDnLMmaaLDl8VqQ3NrJ6zdvTCGh8AcE6m5zwOlAmkiP/+cLbNf3o3aI6NnVE2NN2HJKF2ViJTELoNEpEoQZOLEiWhoaMDevXs9Pre6uq8YYmws94ySMlW9tfallwZLmRItdLzTJ48TMo4SAYvYaKMuWk+O1krWV7YeO77+5hjSU81uz8ebwqZdAheZA99TRLYR9dVZ0yY4szoGtg8+3m51BgJiTBEwx0QKDYAoESzztpbESHMxGCRkpyUgLycZ6SlmTWzTUCqQpsTnn+zm9kC7zusekf456tn48vnFejYkkh6C8oFGlSDIrFmzUF9fj88++wwHDx5EcnKyW+cdOXIEH3/8sbOeCBGregcnc0wUYqONQoqjxkYbYY5xb0vAaMwxkULGAfo2wcRGG52puiKuUimVqutpxoW3Cktq3AqCiGghKorre4rIf0tflVe39LvyL8syqupaFQ8GKBEs87aWxGhzcWyVKi6rR1K8CUs1kK2gZCBN1Oefp+8Hh46cwPK1RVhRkCl8uxWROxz1bJavLfLqc4P1bEgEvQXlA40qNUEuu+wyAH3bYhYvXuysETKSY8eO4c4770RnZ18LyoULFyo6R9ILXkEKVld8L0XIOFd+L1XIOEDfIldUpsWE/wZAAG23nvQ248IbjpT90YhqISrCwO1Hov4tfeW48g94VzfFG6WVTVi+tkh4AMSbWhKezqW2sQPL1xahtLLJi1mKI7J+wUAitsop1VqaSGmsZ0P+pNbnMA1PlSDI/PnzMWvWLADAN998g0svvRQrV65ESUkJmpqa0NXVha6uLhw9ehRffPEFnnjiCeTl5aGiogKSJGHWrFlYsGCBonM8cuQInnjiCVx22WXIyMhARkYGfvjDH+Kxxx5DZWXlqOfb7Xa88cYbuOGGG5CZmYm0tDTMnz8fv/zlL7Fjxw635iBijEDHLNrgdfn5pyMs1Le3rLBQAy47X1xgwGK14Xi7mNa9x9utzgV/eorZ5+BKbLRReKqu2hkXrgv3kYhsIeqLobYfiWgjKkpnV49qwQAlgmXeFmvV+0JdiUCaiK1ySrWWJlKLo56Nu+/RShWMpuCi16B8oFGtufUTTzyBa6+9Fk1NTbBYLPjb3/6Gv/3tbyOeI8syTjvtNDzzzDOKzu2jjz7CvffeixMnTvT7eU1NDWpqarBx40bcdtttuOuuu4Y8v6OjA3fccQe2b9/e7+f19fWor69HYWEhCgoKcN999w07BxFjBAOmgwUvg8GAu66ehT++vNvrMe66ehYMBnGx3+bWTojKUrfLcO7Rl2UZbT52sGk70QVZloW+ZvyRcTFayr4SLUS9NdT2I1/TrkU6etyCp14p9ToYsGpxrltXP0UGy3wt1ipqob562Xy/ff6IqF8wkIitciJbS7tb+4dItNQpMVizbL5fC0ZT8PA1KO/u5zCNTrUgyJQpU/D666/jgQcewKeffurWOfPnz8dvfvMbTJjgWYcAT5SWlmLJkiWw2WwICQnB1Vdfje9+97sYO3Ys9uzZg+effx7Nzc1Ys2YNxowZg5tvvrnf+bIsY8mSJc7gRW5uLvLz82E2m7F37148//zzOHz4MNatW4cJEybg1ltvHTQHEWMECz11ziDx5p+biLIDR/HRjkMen7tgbiLmn5sodD5K1ah5+/Nv0NPrW3Slp1fGO5/X4EeCthEB/sm4GO01qlQLUW8Mt/3IkXat1jaioYQYJLz4zteqBANEBcvCQg2454ZzkZU22esxAmGhrkQgTcRWOZGtpRkEIX+SJGlQwejOrh5nsXIWqCQRAiEoH0hU2Q7jMGnSJDz33HN49913sWTJEsydOxeJiYmIjIxEeHg4zGYzZs2ahZtvvhmbNm3Cs88+q2gABAAeffRR2Gx9KejPPPMMHn74YVxwwQXIzMxEQUEB3n77bUycOBEAsHr1arS1tfU7/5133kFRUREAYNGiRXjhhRewYMECzJo1C/n5+XjzzTeRmtpXg2DNmjVobGwcNAcRYwQLJQpRkn5U1bXi09LDXp37aelh4WntSgXlNn1aLWS8tz6tEjIO4J+MC3dS9v2dXeEwWqcAZ9p1nH+2xiTGmdB0vNOnMRzBgNGIWhzbeuz4wz92+/S6FblQ9ydHIC0izPevbQmxY3zeKqdEu3oiLYgyhiExzoTpSeORGGdiAISEERmUJ9+pGgRxSE1NxW233Ya//e1v+PDDD1FaWoqysjIUFRXhlVdewT333IMzzzxT8XlUVFRgz549AICLL754yLojsbGxuOWWWwAAFosF//nPf/r9ft26dQCAsWPH4t577x10fkxMDB555BEAQFdXFzZs2DDoGBFjBAulClGS9smyjN9u2AFbj92r8209dvx2ww6h+8+VCMo1t1qEdMEB+rbXNLdahIzlj4wLd1L2lWoh6glPOgV02fzTkerbhnYh44wWDBAdLPOlbkSgLdQdgbTQEN+uALrbynYkSrSrJyIKZIESlA8UfgmCaEV3dzcWLFiApKQk/OAHPxj2uNNPP91527WzzaFDh5xBlPnz5yMmJmbI8+fMmYNp0/pST99///1+vxMxRjBRqhAlaV9Z1VE0tvi2oG9ssaC8qlnQjMRyLCeq69pGPM5T39SLWfz6I+PCnZR9c0wkDIKyQiUJHl9pd7dTgKMQ2pFjvmVjeCM0xCCsr9ZowQAlgmXeXvkKxIV6Z1ePz1vlGlssPl9JZLt6IiL3BVpQPhDoJghy5MgR4WPOnj0ba9euxYcffuhs4zuUw4dPpd9PmnSqIvSuXbuct7Oyska8r8zMTOdYtbW1QscIJkoUoiR92Pjv/WLG+XD0bk/uam4Vu6BtabOiw9ItdMx2HwusOqidcTHa9hKHKGMYxo8TlB02zojH7zxfeKcANdsKDxQeakBPr3fZU0MZLRig1N/ozZWvQFyoa+VKIutzERG5LxCD8nqn+qfOkSNH8PXXX6OjowM9PT2DUlxlWYYsy7DZbLBarWhtbcXXX3+NHTt2oLy8XO3p4tixY3jxxRcBAFFRUZg/f77zd1VVp/bbJycnjzhOYuKpgowHDhxAUlKSsDGCSSB+qaXRWaw2fP2NmD2QFdUtsFhtQrZCKfF8NEWFCx1z3NgIIeOI3PozGk+2l1isNhwTlB12rN2KyeYxQjsFqN1W2FV4mAFnTInB1zXHhI470vumUsEyx5UvT163gbZQV+JKorfvg+aYSBgMkpAv9SLa9RIRaRnXL9qj2if6sWPHsGLFCrc7w7gS3eZxNF1dXairq8PHH3+MDRs24OjRo5AkCQ888ADGjx/vPM61QOnkySNXr09ISBjyPBFjuMvRbtcblZXirp77ItC+1JJ7Dh0R25a1rukEpieNH/3AUYmvkZEyJVroeKdPHid0PKW5u73Eobm1E6LKvMj/zQ5LjDMJ6xTgj7bCDuPHRmDvt8eFjzvS+6bIxbErx5UvTx779pPisqq0sFBX4kqit0GQKGMYstMSUFzm3XcKVyLa9RIRaRnXL9qjyiNot9vx//7f/8OePXvcKm4mSdKg48aNU+eLfHl5OX784x/3+1l8fDwefvjhflkgAPp1ihkzZsyI40ZFRTlvd3Sc+kIsYgx3vfHGG1izZo3H52kJrz4FpyPHxBT3dB1PRBBEYI1VJ3NMFGKjjUJSHWOjjTDHRI1+oBtEb/0ZytR4E5bkz3Y7AAIof3Ulyhjm0wLNH22FHY742A1mKKO9b4pcHA/kyZWv0somrFy/Xdh9a2GhrrUriXk5yUL+nUW06yUi0jKuX7RHlZog7733Hr7++mvnf6empmLhwoWYN28eACA0NBRXXnklfvjDHyIzMxMREafSt8PCwrB27Vp8/vnnakx1yEyJo0eP4p///CcqKir6/by7+9RVJqNx5Cej6+9dzxMxRjBxfMEWQQtfaknflMpQu+J7KULGufJ7qULGAdQpjGr3Iqqk5asr/mgrrDR33jfzcpIVuW93/22UqMEicqFusdpQ29iO/bXHUdvY7naBO60919NTzG7XzxmOu7V/iIj0jOsX7VElE+TDDz903v6///s/Z8vZ5uZm5Obmore3FzfddJOzLW5XVxf++Mc/4qWXXkJPTw/+9a9/4cILL1RjqkhOTsZzzz2HCRMmoKmpCYWFhdi8eTO2bNmCbdu2YfXq1Tj//PMBACEhp76QuLMv3MFgOBV7EjFGsOHVp+ATHysmm8EhboKo8ZRpGXv5+afjpcI9PnWBCA2RcNn54p7jahRGPXTkBJavLcKKgsxRi406HD56Qtj9D3V1xWK1obm1E9buXhjDQ2COiXT7y4c/2gorzZ33TcfiWOQ2IHevfClRg0XEQl2WZZRXN6OwuAbbKhr7PS8MBgnZaQnIy0lGeop52O8CWruSKEkSlubPxvK1RV493p7U/iEi0juuX7RFlSCII4MiJSXFGQABALPZjKSkJBw6dAglJSXOIEhERASWL1+O3t5e/P3vf8eHH36InTt3Ys6cOYrPdcaMGZgxY4bzvxcsWIDc3FysWLECnZ2dWLZsGT7++GOMHTu23/YUq9WK8PDhCxp2dZ3q0OB6nIgx3HXVVVchOzvb4/OAvpogjz76qFfniibiCzavPunLlEm+XW10JQGYMmmskLGU2A4D9C0uosdG+LQlJnpshNDFhVK1Hgaydvdi5frtWLU4d9RtMVV1rfjjy7uF3bfj6oqIBSvgn7bCSkqMG+vW+6avi+OhuHvlS3QNFhEL9aq6Vjy5cfew87LbZRSX1aO4rB5J8SYsHWZLmBbrcKROicGKgkyPM288rf1DRKR3XL9oiyrpBK2trZAkybn9xdWZZ54JWZZRVlY26He//OUvnXUy3n77bcXnOZyrrroKF198MYC+v+WDDz4A0L+GR2fnyHuvLZZTNQ2io08VPhQxhrsmT56MOXPmePV/18CQvzm+YHt7ZZpXn/QnyhiGtNPFvOl/JyVWWBqhUs+h8upmn2uCtLRZUVEtpqMOIDaVczTW7l48tXH3iDWklLjiv3DeNFTVteLOJ7bg/mdLUFLWMCjo41iw3v9sCe58Yguq6lqHHU/ttsJKMhgk/OLac91+zqecFo1rLpoBUa8Qd698iazBImKhXlrZhOVri9z+0lvb2IHla4tQWtk05O9FbTUSeSUxY8YkrFqcK7y1NBFRIOH6RVtUCYJYrX1f5idOnDjod6mpfXvW9+/fP+h3kZGR+P73vw9ZlgfV41DbRRdd5Ly9d+9eAMBpp53m/FlDw8j7vl1/HxcX57wtYoxglDolBlcvmO7VuVcvmM6rTzp0zUViAnH5PxAX0FNqj76ohVxhSY2QcRyUqvUwlG8bO0YM4oi+4j813gRbT6/QBasjeyYQXJozze33TUcgaf27e4RsGHP3ypfoGiwP/U+WTwt1b2uTOLKhhgqwabUOR+qUGKxZNh8rb89BzszJg573IQYJOedMxsrbc7B62Xx+BhNRUHJkz3n6/ZHZc+Kpsh0mOjoax44dg802uPhXUlISAKC2tha9vb39amQAwNSpUwEAhw8fFj6vjo4O1NbWoq6uDhdddNGIkbWYmBjnbcffccYZZzh/Vltbi1mzZg17/qFDh5y3HYEfUWMEo6q6Vrz60eDAmTte/Wg/MmZM4huJzsxMNSM+NgqNLd53ikmIHYP0VLOwOZljIoWNJaGvm4vIhdzW8gZYrDZhmS9pp8ciLNQAW49dyHijKSypGfbfS/QV/6suOAOrXtrh9YJ1qO07SnZKUduX+5vcalfv6MoiKkPHkytfomuwRI+NGP2gYfiaqeTIhlq9bH6/v13LdTgkSRLWWpqIKFA5sudG2ibpypvOeTQ6VTJBJk3qu5Ly7bffDvpdYmIiAKC3txfffPPNoN870qFPnjwpfF6PPvooFi1ahLvvvhv79u0b8dja2lrn7fj4eADArFmznF8kdu7cOeL527f3tepLSEjAlClTnD8XMUawEfXl0p12zaQdkiTh3hvnIjzUu7et8FAD7rlxjtAv/1HGMGFtyib8d5EgciFnt8tCWu06VHzToloABDgVxBlI9BX/X1w7G69/ckCR9xQ1s2eUVHvkxKjbq0R3ZfH0ypeWWsiKyFQaLhtK6SuJ3navcRVlDENinAnTk8YjMc4kPAAiYo5ERP7C7Dn/UyUT5Nxzz8XevXvxn//8BydOnMDYsaeKEk6bdmpf6s6dO/tlRgBAVVUVAPRrmyvK3LlznbVGXn/9dTzwwANDHme32/H66687/zs3NxdAXzBi1qxZKC0txQcffIB77rmn39/msHPnTtTU9KWlO2qLOIgYI9iI/HIpMiuAlJc6JQa/uvk8PLbuC3Tb3F+Mh4cZ8KufnSf8Q8RiteF4u5ggw/F2KyxWm6YWcgOJzL5whyOIM3ABJfqK/0mrTbH3FCU6pfjLSJk5omu0xMdG4aaFZ2PG1PFun6OlFrIit7QN9Zh7eiVxsnkM7rp6FtJShv/3E1EMWEl6mCMRkbuYPedfqmSCLFiwAADQ3t6OW265xRnYAIAJEyYgMTERsixj/fr1OHHiVLvDr776Cp988gkkSXJmjIiUl5eH8eP7vmD985//xNatWwcdI8syVq5cia+//hoAkJOTg/T0dOfvb7jhBgB9BVMfeugh2O39F2ZtbW146KGHAABhYWG4/vrrB92HiDGCiVbrJZA6MmZMwp0/mYWwEPfevsJCDbjzJ7MUKcLX3NoJUWtxu4z/Zm1oM0PJYrWhpFz9bR1DBXFEB4o+2Xlo9IPcUFg8+D3F10JoWjJcZg4gvkZLY4sFv92wE/kPvIfHX9qBsqqjo2bviazB4ksLWSW2tA1ltCuJruqbT+L+P5cM+ViKLAasFD3MkYjIW0pnz9FgqgRBsrKyMHv2bGcXmMsuuwx/+MMfnL+/4oorAPRtObnsssvw29/+Fvfddx9uuukm9Pb2fdn97ne/K3xeY8eOxSOPPAKDwQCbzYabb74ZDz74ID7++GN89dVX2LRpE/Lz8/G3v/0NQN82mJUrV/YbY+HChc7MkHfffRc33HADPvjgA3z55Zf45z//iSuvvNIZ9LnrrruGDOaIGCNYqPXlkrSrtLIJf3r9K9h63csEsfXY8afXvxq2eKUvlMja0OourebWTr/Mbair8aIDChVVYrrobC2vH/I9xdvtC1q7lj3S9iqlsoQ8WdyK7GDkSwtZNbe0Oa4k3nfTXPzmtnlIMEeNONbAx1J09xol6GGORESkL6oEQQDg6aefdmZ8AEB4eLjzdwUFBZg8eTIAoLGxEevXr8e//vUvZ1eZ6Oho3HjjjYrM6+KLL8bvf/97REVFwW6345///CfuuOMOXH311bj33ntRWloKAEhLS8M//vEPZz2QgX/b3LlzAfRtW7n77rvx05/+FA8++KCzoGtBQQFuvfXWYechYoxgoOV6CaQ8Jbot+EKJ9HutpnGLDvi4Y7ir8SKv+BsMkrDcm1PZPINlzJiEO358DsLcrGkTGmLAjQvPEjQzcYbKzBFdo2U47ixutdBC1h9b2korm/DIX7ehodm9wtG1jR24d/XneOzFLzTzfjoUrb3nExFRYFAtCDJx4kS8/fbbuOOOOwYV9hwzZgyef/55TJs2DbIsO/8PALGxsXj22WdhNitXu+HSSy/F+++/j//93//FWWedhTFjxiAsLAyTJk3CggUL8OSTT+K1114bthjp2LFjsWHDBqxatQrZ2dkYP348QkNDMXHiRFx00UV46aWXsHz58hEXNyLGCAZarpdAytJiQVwl0u+1VNfAlT8KCZ81bcKQV+NFXvE/O3mCkHEchqsR48xgcrOwbE+vHa/8uxJa67A71PNJdI2WkYy2uNVCC1m1X8PeBgq6e+zo9rLQsRoFxrX4nk9ERIFBlcKoDpGRkbj77rtx9913D2qXm5KSgn/961/48MMP8dVXX6G7uxtnnnkmFi5cOGShUNHi4uLwi1/8Ar/4xS+8Ot9gMGDRokVYtGiR13MQMUag0+oCkZSnxYK4IlugOtLvzTF92yBEfG2XJAjrXqO1+GteTrKQx33W9Imo+EbMdhgAsNoGL9i8XaR22eyaCoIMl5mjdpaQtbsXv92wA7/6WSYmjo/qFyjTQgtZR3BURGBotNokogvSekLpAuNafM8nIqLA4LcVYFjY4Kt7YWFhyMvLQ15enh9mRHqg5pdL0haluy14S9Ri3JF+H2UMw4Roo5CtWhPGiawurv5q/OtvWmCx2ob8G0R0XZkab8KZHnQfcYcxrH+g1tdFqkoJFm4Zrk6GP4q+NrZYcOcT/xmyK4ijBoungSdPW/IOR4ng6HBEF6T1lOj3U1dafc8nIiL9U2U7zMMPP4wvv/xSjbuiABdlDEPWdwbXZfHGeWnxrL6sE1ouiJt2eqzbdR6GExZqwHdO79uWYbHacExQ291j/227K4I/FrryCDU2fO264rjiP36c2EDowPH8vUgVabg6GSK3hXlquMKpjhay7m6NmRpvwqrFucK6SKlVm0TtttUDKVVgXMvv+UREpH+qBEFeeeUV5Ofn46KLLsKaNWtQW1urxt1SgDprmpg9/Gcne7/nm9Sl5YK4Fd+0uF3nYTi2Hju+/uYYALFdWEYKInjKXwvdker2eNt1xfWKvzkm0tcp9jMwu8zfi1RRXAN1A4ms0eKLgYVTR2shG2KQkHPOZKy8PQerl833OQPElRq1SdQqSDsSpQqMa/k9n4iI9E+17TCyLOPQoUNYu3Yt1q5di3POOQdXXHEFLrnkEkRHR6s1DQoAew8eEzbOj76XImQsUpaWC+KKTtnW6t8qMsXfE6PV7XFc8X9y4263Mi6mxpuwJH+20AXvcLSwSBXFEagbbluBqG1hvnIUTl21OBepU2KcLWTTU82wWG1oabOis6sHkRGhiI0WuV2sPzVqk6hZkHYkShQY1+r7IBERBQZVMkEefPBBnHvuuQDg7Pzy1Vdf4ZFHHkFubi7uvPNOfPTRR4OKpRINZLHasK2iUchYWyuYIqsXWi2Iq0TKtlb/VkBcir+73K3b48sV/0NHxG5VqWs64bytlUWqKK99sh/7a4+jtrF90HuniMwHUYbrChJlDENinAnTk8YjMc6k+HZIEZlKI/FHMdShKFFgXMvvg0REpH+qfCpce+21uPbaa9HY2Ih3330XhYWF2Lt3LwDAZrPh448/xscff4xx48YhLy8Pl19+OTIyMtSYGumMEimyrAuifVFGsW9VkRFivmAr8XzUcvFfEcVIPZGVNnJRSFfeXvE/JPhvqW1sx/SkvmKrWlmkilJaeRSllUcBYMiCpL5kPoimla4gSmYq+aNOz0BKFRjX8vsgERHpnyqZIA7x8fH4n//5H7z11lvYvHkzbr/9dkydOtWZHdLW1oZXXnkF1157LeuH0JCYIhucLFax/06dXWKeR0o8H0XWVxits4SnfC1G6qmzkr2r/+PJFf92S7e30xtSR+epDAktLFKVMlRBUm8zH5RSWFLj7ykAUK42iT8L0jqIfo9x0PL7IBER6Z/f8gNPP/10/PznP8fPf/5zlJWVobCwEJs3b8bRo31XmWprawfVD7nmmmv8NV3SCKbIBietBr+Uej6KbrsrkrftR72x52CL4nV7xkWFCx3PFHlqsSXyaraWOQqSrijI9DjzQUmOLWZaWAArUZvEX3V6XCnxHuOg5fdBIiLSN1UzQYYzc+ZMLF++HJ999hnWr1+P/Px8TJo0yZkh8uWXX+KRRx7x9zRJA0Re+WKKrH5oNfil1PNRjc4SvvC0/ai3tlU0Kl63J1Hw35AUP855WytdU9TgKEjqyAgZKfNBLVrtCiKyNonadXpcKfkeA2j/fZCIiPRLE0EQB0mSkJmZiby8POTl5SEqKmrEyugUfJgiG5zMMZEQtY4yCAx+KfV89HXbiTudJXyVOiUGq3/5fdxy+XcUCyZ6u4i1WG2obWwftoinq8Q4sUGQKZPG9vtvfy5S1eZakNSR+XDfTXOx8deX4K6rZyE8TP2vHIG+5dFfBWnVeI/Rw/sgERHpkyb2AvT29qK4uBibN2/Gli1b0N7e7vydLMsICwvD97//ff9NkDSFKbLBJ8oYhvHjjEKu6o43RQgNfin1fHRsO3nsxS/Q3WN3e5zwUINbnSV8VVXXqsqWB3cXsbIso7y6GYXFNdhW0dhvC8pQRTwdooxh+M7pE/D1N7633k47PXbQc0vtYrL+NlRB0vrmk3h+Uzm6be4/j0UJ9C2PvhakDQs1QJLg0b+Nu91rRPB2+52acyQiIv3x67eD7du3491338W///1vtLW1AUC/lnbnnHMOfvSjH2HhwoWIjo721zRJY0QsKpgiqy8Wqw3H2sWktR9rtwqtE5CeYkZ8bBQaWyxej5EQO2bY52Ov7NnC0dPjvVFa2aRKTRDAvUXsaAEZRxHP4rJ6JMWbsHRA9438i2bgV3/e6vNc8y+aMehnWuuaoobCkhpnEESWZTy5cbdf/nYJCIotj74GCkxjwhXpXiOKkh12iIgoOKkeBCkrK8O7776L999/31kE1TXwcdppp+Hyyy/HFVdcgalTp6o9PdIBXxcVTJHVn+bWTsiCakvKMjTXGlnG4D+uqq4Vj/x1G3o9jGn09gKP/HUbnvj5dxVZBFTVtaoWADFIoy9iPQ3IDCziCQAzUyciNtq3TKPYaOOw7Vi9zerRK9eCpOXVzX7LggnscrT9+RooWLNsPiqqW1BYXIOtFQ39MqlCDBKy0hOwcN40pKXE+uWz01FnRstzJCIi/VAlCFJZWens/nL48GHnzx3BD5PJhIsvvhhXXHEF5syZo8aUSOeYIhtctNodBgDKq5t9ygIBgMYWS78tBLIs47EXv0Cvl11Feu1956974CKhiwG1r+qfPcT2ElfeBmQcRTxXLc51vheEhfpWryI8dOS6BaYxYrvQaJndLqOiuhkxJiNe//iAX+eitYCnknwJFCjRvUY0PcyRiIj0QZUgyI9+9CPnh60j8BEaGorc3FxcfvnlWLBgAcLDg+cLIonhuPL1x5d34dCRE6MenxQ3FkuvPZcBEB3SancYANhcfFDIOK5bCL460ORz/ZOWNivKDhzFOdMniZgeAKh+VV8eIf3H14CMo4jn6mXzhQSyGlpODqqFMXCuwZAF4vDrF7f7ewoAAr8w6kAiAgVRxjDNBxT0MEciItIu1bbDOL7Mnn322bjiiitw6aWXYsKECWrdPQUwCe5e6WZ6rF45WtHavcyMcCWyNbLFasPWigYhY7luIXjh7T1CxvzrO19j9S/FBUFEBXzctafm2LD1W0QEZBxFPJUIZLny55aQYOca8LRYbWhu7YS1uxfG8BCYYyIDeiHNQAEREdHQVAmCxMfH47LLLsMVV1yBlJQUNe6SgoDHtQCODK4FQPrgaEUroguLyNbIza2dQgIzQP92sAcb2kc52j0H69uFFYEVGfBx10j1WwqLaoTcx78+q8KOvU1CxnINZLl69cP9QsYnz4QYJEwYF4GyqqMedw0iIiKiwKVKEGTLli38ckFCiawFQPqgxdbIStQqOVB7XOiYVYdaMfOMiT6PIzLg44nj7VYkxpn6/UxkQGb710eEFdB0BLJcgyAnO7vxVVWzoHsgT6SlxOKeNUVedw0iIiKiwORbJTg3MQBCIomqBTBSvQHSHkdrZF+Ibo2sRK2S6sNtQsf8pl7MeP5q72q1Db5fod2CxAzjNLAGxdZydbNn6JS9Ncfc3obk6BpUWikmK2gkFqsNtY3t2F97HLWNfdlaRET+wvckCkaqt8gFgPb2dtTX1+PkyZOw290vFDd37lwFZ0V6IbIWwHAtLUl7tNgaWYlaJTbBxTO7hwgieEN0wMft+w0bfL+tHV1+mIl7Bhbd3bKrzk8zCW6SBI8L0SqZKSjLMsqrm7ktR4eCrZYMBQe+J1GwUzUI8vbbb+O5557DN9984/G5kiRhzx4xxQJJ35QuYkjapbXWyFHGMGR9Jx4lAq72n5cWjyhjGBLMUQJmdkqCeayQccwxkZAkCMvAcNf4cYOL2Gq544dr0V2L1YaK6hY/ziY4+fI8de0aJOqLf1VdK57cuJvbcnSEC0QKZHxPIlJpOwwAPPHEE7j33nvxzTffQJZlr/5PpEQ3DtIXR2tkd7fGTI03YdXiXMWK4Z41TUyXq7OT+7bpnD1N3HYdADgrebyQcaKMYZgwREBCSYZhOvmIbHGspObWTtj52aWqsFCDz4E6R6bgaNxJIS+tbMLytcPXJRlIzW05NLSqulbc+cQW3P9sCUrKGgZl+jkWiPc/W4I7n9iCqrpW/0yUyAt8TyLqo8o3yV27duGFF14A0Bddj4qKwjnnnAOz2YzQUH18mSVtUKIbB9Na9Sd1SgzWLJuPiuoWFBbXoKS8vt/CxyAB2TMnY+G8aUhLiVX0St3eg8eEjfOj76XAHBOFcWPC0X6y2+cxx40JhzlGTGaJxWrD8XarkLHclZ02dCefGFOEqvPwhOt7ir/qqASrqfEmxJgi8NUB3wvRDpcp6EmGQPXhNhbw1hmPu841susc6QebChCdokoE4pVXXoEsy5AkCVdddRXuv/9+REWJTfmm4KBENw7SL/m//5MkqX+2mCQBct/vlWSx2rCtolHIWFsrTrVX/fEFZ+DFd772ecyfXHCGgJn16ctqEDacWxbmDN3JxxwTqe5EPODazcZfdVSCicEgITs9AQvnTcPpp43DtQ++L2Tcodode5RCHmdCd0+vzwW8RW7LoZFxgUiBTFRTAb4nUaBQJQhSWloKSZKQmpqK3/zmN2rcJQUoJbpxkP5oZT+rUplJP/ru6diweQ96er0fOzREwuXfPV3I3AD1sxpEd/JRi2s3Gy0Ha7x1+6KZ+P/t3Xt8U/X9P/BX0qZNQ1t6g7ZQoNACChQB5Vq84PUnqFNUJlMZ0z0cijp03i9z003c5nQOmPPrFGXzuolMxcvUMQSqXBSFAhZawFJ6ozfakqZN2/z+qCckae75nFvyevrw8QhtcnKak+Sc8z7vS1aaGY+9uE3W58nOsCA7w4LdFQ1ey1sMAE4bk4VLzxyFqafmwGAwoLK2VbZMwZAzBOoia94NsIG3kniCSNGOQwWI3CnSE+TYsWMAgHPOOUeJp6MoJk3jECHOR78B0jYt1bPKlZlkNBpx+w8nR7Ss2384GUajuK94pbMarjx3tM+Tiar6yE8w5eJtmk002VXRgAkFWcK+h13FGQ0oPm0IHr+5GPcuOgMt7Z0++3s4AHy9vwGPvbDN2ZdBrs9juBkCIqwvOaT4c8YikSeIRFokcqgAUTRQJAgilb4kJUXfVTFSlsVswrh8MY0oTx2ZwX4gOhNpurLoBnZyZibNOX0YFs09NazlLJp7KuacPkzUagFQPqvhrf8e8NkQu7bRqui6hMJ1mo2WgzXh+vz7SUgzJ+QKWd7ksYPwx5+fhb/ccy5efexi3LdoKrp7evHAX7aEHOg8VH1cyDpJkhLjI84QiBQbeCuDJ4gUzThUIDLBNMEm/VGkFqCwsBA7duxARUWFEk9HUY6zFmKTFtOVpcwkESn43jKTrj5vDLLSkrDija9h7+kNuAxTvBG3LZgkPACiBr2m3bpuQy0Ha8IllYnMLc7Hll3VES/v6nPHYMzwkxOMIgl0Pr9uN4wGCOldI30eRWQIRIINvOUnxwkitxdpCYcKhM61Cfbnu2vg2XZuVtEQjsnWOUWCIBdffDG2b9+OTz/9FE1NTcjIEHMln2KP1WbH3kNi0k33HGzkwYqOaLGe1WI2YeaEXCEngzOKvE9CmXP6MMyemIMH/vo5vj3c7PPxp+Sn4/ElM2EyyfN+bmjpkGW5/via0DFwQILi6xKM+DhDTHyfdHR2Y8KoTJjijbB3Bw7O+WKKN2LkkBRU1rbC1tWDRJMRf3zly7ADnZ32XlgS42EV0PBa+jyKyhCIBBt4y4sniBTtOFQgNOVVLXjq1S9xpK7d6+8dDjj7zg3LTsadPzo94r5zVpsdDS0dsHX1wJwQh6y0JH6PyEyRIMiCBQvwj3/8AwcPHsSyZcvw17/+ldNhKCwNLR0+a8RD5XCABys6IjJdWWR2wcWzRggJgsydme/1569/XIZXPvw24OO/PdyM+fe9j2v/3ym45oKxEa+PJzXKAXxdVdXqRZfuHgcaWqzOscTZGdG5n0tKjEfpwcaIAiAAYO/uxbW//FDo1CERARAAmDdrpNAMgUiwgbe8eIJI0Y5DBYK3s6wev3lxK7qC3L8dqWvHvSs24aEbpoc8JjuUkevMNhFP6Lu4utr3icAvf/lLLF26FNu3b8e8efOwYMECTJkyBRkZGRgwYEBQyx8yZIioVSWd4sFKbNJyurKwoJyXQq9nXv8Kn2w/EtJyXvnwW9Q1nsDPr5kiZsW+p8a4V19XVVvauxRfl2DtO9yEMyf1BT+kUbnRRCoTCSYwFww5xi5bzPGw2sL/bpcmEx2paxOWIRAuNvCWH08QKdrJXbobLcqrWvDYi1tDDvB3dffisRe34ve3nRl0RohWphzGMqHf1Oeee25Qkaqamhr8+c9/DmnZBoMBe/fuDXfVKErwYCU2aTld+Y2P9wtZzusf78dpowe7/Lss5ACI5JPtR5CdOUBoRoha4171FqisaTjhvG0xmzB+VCb2HIyeiREzivoaomohQ8KXjs5uJCbEoTOMoLk5IQ7LFk6BwWBQrRmqK19lciSOxSz2OCApMbonRJH+KFG6q3cOhwO/W7M97AxHe3cvfrdmO/7v/vMDnguHPHL9++bfDyyeFnK2CfkmfDqMw+EI+H+w9/P2OIptIk/EDEDURrOjjVYzgKw2O0oFneCWVjQ6O4739PREfKX9lQ+/RU+PuNdNrW7o3gKVOZnaLTMxeYzIXXjhGJXWRB7zZo0UGpSUg8MB3HR5UchBc3NCHB5YPM15tU2N7CdP82aNVHsVol4kWUPedHSqHzwjcaJlMsjc4nwhy4nW76Rd5ccibmZe22jF7vIGv/fR2pTDWCY0/D116lSRiyOSlXYP4cmTVjOARI9Arapvx5jh6XhuXamQ5f3fulLcfOVpQpZVUSV2/GgwfAUq8wZrt8ykYEiq278nFg5CTqYlKibFDMkagAkFmThwpEXtVQnInBCHm6+ciNc/3u+WnePLiJwULPNINxaZQh6OnEwLJhRkqvLcsUSrQXZSTzT2aigqyMLwnJSIGsxLpYLR6LX/iMnqfe3jMkwcPcjr77Q45TCWCQ2C/P3vfxe5OKJ+RE+oYGNUfdBqPavoE9u6JivGDE/Hp9sqhSzvk+2VwoIgbVbl+3D42toWswkTRmUKy8IRacigZLd/GwwG3LtoKu7+82fo7tF36PW2BZNgMBg0kSERyB/+8aXbvzMHmtHcanPrQRJnNGBGUS7mzRqJCQWZ/Q4qRaaQh8MAHuQqQatBdlJHtPZqMBgMuGPhFNy/anNYJ+GupYLh0PL0E6vNLqxsVcrq9fa3aXHKYSzjNzXpCq/YxCat1rN2CX4/dnZ140hda9BdyQPpsvfiSF0rhmWnBr5zACkWdcbS+gpUXnPhWDz01xIV1sg/b6nwhXlpuOHSCfi/dbtVWCMxxo/KwISCvoMutfrDRKLxuA1AX3bFNReOxZhh6cgcaA74XTC3OF+1IEhN4wke7CpAq0F2Ul6092oozEvDA4unhVyO4VkqGCy9ZNQcqROb1fvF7hqcO3V4v59rdcphrBLeE4RITrxiE7u0WM/qbaJLZAz45oD/etJQ7aoQc3WjIG+gkOWEylegsqggE/Fx2rtS3txq8/rz00br+4DlRxeeovYqCFHbaMVf/vkNGlo6ggqGSinkallfcki1544VUpBdhGhtGhkLYqVXw+Sxg7F86eygv9dG5KRg+dLZIQd5yqtacOuTG/DgsyUo2VXTL8goZdQ8+GwJbn1yg6qvX12T2Kzelf/8GjvL6t1+JseUQ2m50dCzRg08AyRd4RWb2KXNelbRJ+EOtLR5P4kOV/NxMSVkWWkWZA40O6+oK8VXoLL0YKMmy0tsdu8H0Gr3lxBJdFmi0kIZZxhpCnmkRI/0Ju9EZfxEa9PIaBdrvRoK89Kw8q45KK1oxPoth/B5qXuQIlCpYCDRnlETiL3Hgcdf2oblS2c79zGipxyW7KrB9n21+Hx3DVxnhxgMwKyiIZrIsNE6ZoKQrljMJozLzxCyrFNHZvDAUkcMBgOuOnd0RMu48tzRQncIiYIzkxIT4pGWIjYwlz5QXOnCD84qELasYBgNvic4iUorFc1s8v6eEPndpYb3Pz/svN3S1qneiggijTMMZvKclEKuRi8UaaQ3r/bJS0TGTzQ3jYx2Ins16EVHZzcGJidg/pxC/P7W2fjjz8/CH39+Fv5yz7l49bGLcd+iqSgqDP0kWo8ZNXJMnJMCY9I+RnQQ/Zk3dqJkl3sABOibjiZl2Cz9w391k6GkBmaCkO7o/zoqhcPhcOBf/z0Q0TLe+u8BnDMlT1ggJDtD7I4zO8OC/FyxqfcTBR6Uj8hJDnwngdJTvfdsEJlWKlp6qu8glp6/u1wzEqKll5I0ztBXJ39XUgr5U69+iSN17Qqs3Ul/XbsLpQcbNVtPL9Fy48NA1G4aSaER/V6LlV4NwfboyBsc3r5erxk1ck2cc21iqkYQ/UhdO+5dsQkP3TA9KjJsRGMQhHTFarNj7yExkfY9B313cCbt0WJX7WHZYneceYOTYTGbkBBvFNIcNcFkFNIUVbL63b3ClhWM5lab18+oyLRSkQx+MldEfnepQcpIsJhNUdVLyd84Q2/UmNiyq7x/nyCtTKjQS+PDYCjdNJJCI9d7TY5eDVo8rlRi6o0Wj9OCIefEOSkwplZJbCjln7GG5TCkKw0tHf1Sv8LlcEDx/gYUPpFXarTuvKnDhCzn/DP6dycPl9Vmx+EID25C1evjM6pGb4ZgjB+Z6fPgV+R3l1qkDJC0lESV10Sc0opG7DpwLGCJyc6yety/ajMqBU8REEGqp/dsxCc3PTU+DJZSTSMpNHK+10T3atDicaXz+yvIfXi43yl6Pk675sKxsizXNTAmqgFzqEIp/4wlDIKQrnBEbmySq6t2pEQ3iJQOnmYWidlRzizKEbIcACg/0ixsWaHw9hlVI600KH4uPmo1cBOKlrZO7K9shq2rW4V8CPk8+NcSLP3DBix8+AM88fJ27Co/5nawGG6Nu5KUrqdX6qRKDVLTyMdvLkbxxCEwGt3f7XFGA4pPG4LHby7Girvm8OqqzOR+r0X7caVSPTq0epwWrImFWbL0BnENjImachgOqfyTToqenFaKCRyRG5vkuFIjIl1VroOnj76oFLK8D7dWYtLYbCHL2ntInSCIt8+oViet7D3U5DMVWrOBmxA89uJWVZ//ydvPhMFgwJ6DjXjx3T3Cl+8tHbxg6MCIatyVpFQ9faQnVa4TE7TKYDCgqDALRYVZsNrsaDxuQ0dnN5IS45E50HuvIhJPifdaNB9XKtmjQ6vHacEyGAy4d9FU3Ltik5ByZFfSsZ2IKYeRCLX8M9oxE4R0RTr5EYEjcvVDq1dq5Dh40urVlOPtyk8E8fUZVTOt1B9/qdAiv7tilcVswpjh6Yp8b0tXk9f+r1y1A9ZwyD2hQtRJlZ7Ssi1mE4Zlp2DM8HQMy05hAEQhSr3Xovm4UsmpN1o9TgtFYV4aHrphOkzxYk+PpcCY1IBZrYsipRWNnCzmgkEQ0hWRJz8zinJ5MKMTWr1SI8fBk1brkwcmK98Hwt9nVM20Un98HbhpNXCjJ4eqj2N/ZbNiJ9C2rh6sWa9sM2AR5Kynj8VRoqQOpd5r0XxcqWSPDq0ep4Vq8tjBePSmmcKW5xkYU3PkOgBU1Ss73UzLGAQh3RF18jNv1kghyyH5ZaUlQVR2t9HPBI9QyXHwpNWrKeNGpgtZTij8fUaltFKt8XfgptXAjV784R9f4hfPfIYnX/lKsefUWMVVUOSsp9dz40PSFyXfa9F4XKl0Vmk0ZNRYbXZU1rYiwRSHSaPFTKeZOi4bDS0d2F/Z7GzAHWoDZpHqmqyKP6dWaadwjShIImrqRuSkYEJBpsC1IjlZzCZkpJjR2Bp5VkN6qth67rnF+diyqzri5UgHT1q9mlI4TNkgSE6mxe9nVEorvfvPn6G7RxtnqoEO3NSuB6bY0NvrwM6yehSfNlTocmNllCipT+n3WjQeVyrdo0O6KCTieEjJjBp/o5dF2LqnFl+U1jr/7TrOecUvzsGeg01Yv+UQPi91n3oUZzRgRlEu8gYl441P9gtdJ+rDIAjpjnTyc/+qzWFdNTcnxGHZwimyNo4jsaw2O5raxJR1NLXahB58iz54Etn0U+TVFIvZhOyMJNQ1iZ2I44shiPkjhXlp+Mml4/H8ulIF1iiwQAdukX53kb7dPH8idpU39DvYNRqAZEsCWk90CXuup179ChazSejoVr03PiT9UPq9Fo3HlWpklYq+KCS38qoWPP3aV7JemPCs3vTWgPu+H0/12YB5f2WT0CBIdob4CTh6xXIY0qXCvDQsOH9MWI9dcP4YzXemJ3cNLR39diThcjggrE8GEHmjK8+DJy3XJyuZnlrTeCKovgHnTx2uwNoEZ+7M/ID3UbsemNRTVJiF+348Fa89djH+cs+5uGPhZORmDUCvA0IDIADQ1d0rfGSuVkv1KPqo8V4L97vZnBCHBxZP09xxpRpZpSLKVJXKqAl19LIcXMc5+2rAnDdYXMmMAUDe4GRhy9M7BkFIl8qrWvD6f8rCeuzr/ykTemBI8mtpEzuZpFlAWY0r0QdPWqxPttrs2HdY2TG5wdRyW8wm5OemKrA24kweOxi3XHWa8A70pF2uWVkWswkNLR149q1dqGk4Idtzip7EotVSPa2Q+gm41v5TeNR6r4Xaq2FETgqWL50tNONKFDV6dIi+KCSXcEcvy0Ea5+zrvMRiNmHCKDFBofEFmcy+cxFdeyCKCQ6HA79bsz3sOd5d3b34/ZodeO7+8zSVuki+ib5iaLOL3/FJB0/BplaOyEnBsoVTvF490mJ9sshsnGAF2zdgQJI2durvf34YE0cPCni/nWX1+Mu/voE9zO8w0h/XrCwlD8Cl6RhFhZE3+dNqqZ6a/PUTcK39LyrI4vFGCNR8rxXmpWHlXXNQWtHot1fDvFkjMaEgU7PbVa0eHdJFoVC/45TKqIl09LIcpID1irvmeH0/XXPhWDz015KIn2fhBWMjXkY0YRCEdGdXeQNqGyPrblzTeAK7yxuCOmEh9Ym+Ymg2yVOKIOrgSYv1yWocMARTy92XodKk4Fr5FkzQRktXoEg5UlaWGgfg60sOCQmC6LXxoVwC9RPwVvuvtZIJrVL7vWYwGFBUmIWiwiyfvRr0QK0eHSIvCokmYvSyJxEBO38B64mFWcjJtER07pObOaDfshtarKioOo42axdSLAkoyBuIrLTY6RnCIAjpTrhlMJ5e+7iMQRCdSEtJFLq89FT5rkCKOnjS2tUUtXpYBMoCEtlAL1KBgjYOhwPLX9rKAEiMcc3KkuMAPBCRk1j01vhQLjvL6kP6bpZq/x9YPE2TpRNapJX3msVs0k3Qw5OaWaVazagRNXr5tMIsXD/3VBypa8eaD/aiuTXysm1fAWuDwYB7F03FvSs2hZUFnxBvxD2LzoDBYEBvby/e2XQQb2+sQJOX/niZA824/OwCXHbmKBiN0V2yyyAI6YrVZkfpwcDNEoNRWtHIEX06kZWWBIOhf5ftcBgNyjb4lOrxw6nL19LVFJHpyaEIlAX0zYFjCq1JcPwFbf7wyg7UN4vtR0O+GQ3AhFGZ2BVEg125eGZliToAD4XISSxaLNVTWrjZXFLt//Kls5kREgS+1yKndlap1jJqRI5e/qa8Afue3YIuu7iyVn8B68K8NDx0w3Q89uLWkEppTfFGPHTDdBTmpWHDl0ew4s2v/T6+8bgNL7yzB2ve34fbFkzCnNOHhfW36AGDIKQrVfVir6BV1bdjzPB0ocsk8aTU2JLdke+85E7DFl0jrpWrKSLTk4NlgP+AVXlVC/72b22Mxw3kr2u/waadyr12emOKN8DeLTbA1usA5kwdploQxDMrS+QBeKhE9VVS+6RKbZGWMwWq/aeTYv29JopWskq1kFEjOnNUZAAECHKcc4jLlO7/z0/3Y837+4J+nL27F0+9+hUaWjpw9XnhTePUOgZBXDQ0NOC1117D5s2bcejQIVitViQnJ2P06NE477zzsGDBAlgsvmulent78fbbb2PdunUoKyuD1WrFoEGDMGXKFFxzzTWYOnVqwHUQsYxoFmkvEE91TVYGQXRi3uyRQoIglxSPErA23slZI+6Q/vPIKOl1OABH3+/lJio9OVj+/iKHw4HfvLgVGqmE8WvDl5VYr0IGgF4YjQbMKx6FdRsrhC972OCUiK8mh2NIlgV3Xz/V7fOtZumWyL5KWjmpUoOIciaRzWqjXSy/10TSUlapmvRQiuorYC1loIVaDtPV3YtHX/gC3T3h7XvWvL8PWWlJUZkRwiDI9z755BPcd999aGtz/3Jobm7Gtm3bsG3bNqxZswarVq3Cqaee2u/xbW1tuOWWW7Bt2za3n1dXV6O6uhrr16/H4sWLcd999/lcBxHLIIpWRQWRN4bKybTIlhorV414oMCKwwHFmu+JSE8Ola+rIt8cqEejl3pWrent7cUzr3+t9mpoWm+vQ5YACNB39fGqc0fjqVe/kmX53hiNBjy17GwMSEpw/kzKEFODHJNYQj2pAoCxI9IRF2eAw+HQ7dV5UeVMoprVxgKewIuhlaxSNanV2ywU3gLWkWaghRsAkax482ucPXlo1PUIYRAEwLZt27Bs2TLY7XaYTCYsWLAA55xzDtLS0lBTU4O3334bGzZswNGjR3HDDTdg7dq1yM3NdT7e4XBg2bJlzuDF7NmzsXDhQmRlZWHfvn14/vnncfToUaxevRoZGRm46aab+q2DiGXEguwMsV2LRS+PtM0QciJhcOSqEdda8z0pPfmeFZsUG+/q66rI3/69R5HnD5XnAcw7mw6iRw/pKlEozmhARmoi/vXfA4o+78yiXLcASKBAptzkKgF0Pal64+MyfFPuP8jzzYEGfHOgQbeTUkSWM4lsVhuI1WZHQ0sHbF09MCfEISstSfWyhFDxBF4MrfXokIuv97xavc2C5StgrUZDbVf27l68u+kQfnB2gWrrIIeYD4I4HA78+te/dgZAXnjhBUyfPt35+4kTJ+Kiiy7CqlWr8Oc//xlNTU148skn8cc//tF5n3fffRebN28GAMyfPx/Lly93/m7SpEm4+OKLce2116K8vBwrV67EZZddhpycHLf1ELGMWDAsO0XYsgwA8gYnC1seyWt3hZjRyKLTkOWqEddy8z0lDy+9XRWx2uz4TsUDAn88D2De/l+5SmtCMybkouLoccUPHl2nUYQayJR7fUQzGAzo7ulFWWVz0I/R66QUkeVMIpvVeiO6N5UWxMoJvFK00KNDpGDf8zPG5wgprZbDhIJMr9tEjYbant7eWB51QZDoymsJw9dff43y8r6D1GuuucYtAOLqlltuwZgxfY1h/vOf/8BqPXkytnr1agBAcnIy7r333n6PTUtLw69//WsAQGdnJ9asWdPvPiKWEQssZhPGjxJTzjDex5cNaZPINGSRRNaIS0QFVsKZSOOPtF7hjGgLV1Ji//TVAyGccCnNarM7bze0WNEkYGweheeUEemKHzzmZg5wltyFG8gUSe7pGJEGa8urWuRZMRmI3o6imtV6Kq9qwa1PbsCDz5agZFdNv8CN1JvqwWdLcOuTG3S1DSQWswnDslMwZng6hmWn8FhOI6w2OyprW7G/shmVta1u+0M5hfKe1/L7fc/BJuwsq3f7mZoNtV01HrehoUVsX0a1xXwQZPv27c7b5513ns/7GQwGFBcXAwC6urpw8OBBAMCRI0ewd+9eAMCcOXOQlpbm9fFnnHEGRo7suxrz4Ycfuv1OxDJiycILxXQpXnjBWCHLIfnJkYYsihzBGTkCKyKokZLZ0dn/xGPfYe0GQQ5WtzpvV1QdV3FNqGR3teIHj1KD4kgDmSLIPR1Dq8FauYjuJyCyWa1kZ1k97l+1OejvaSkrx/PEiyhYDocDu8qPYfnL27Dw4Q+w9A8b8ItnPsPSP2zAwoc/wBMvb8eu8mOyfc5Dfc/XN3dAq8lP3T29+M2LW90CNWo21PbkenwTDWI+CDJx4kQsWbIEV1xxhTPA4IvrB7izs+/q3pdffun82YwZM/w+ftq0aQCAo0ePorKy0vlzEcuIJRMLByEnM7JeHjmZFjYl0xE50pBFkCs4o9WsFzVSMr1dLT3ert3silaXdWuzdqm4JrTvcLPiB4+1jVaUVjSqXsOtxHQMrQZr5SL1ExBBjma1sZSVQ9qgdtZRuO95Lcddu7p78fs1O5znnFqaaNOq4WOvcMR8EGTGjBm444478MQTTwTssbF161bn7aFDhwKAs5QGAPLz8/0+ftiwk+OFDhw42ahNxDJiicFgwL2LpsIUH97b1xRvxL2LpuqmDpa0m4YsR3BGq1kvaqVkertampaSqPh6BCsx4eT6plgS/NyTotX6kkOq1nCPyEnB8qWzw+63EWxKu5aCtUqk4VvMJsyckBv4jkEQ3aw21rJySH1qZx2JyLbT6mlATeMJ7P6+0bSWJtqkJmv32CscMd8YNVgbN27Evn37AABjxoxxBkxqa2ud9xkyZIjfZbhOlHF9nIhlxJrCvDQ8fMN0/ObFrSH1J0iIN+KhG6brrit9rNNqGrIcwRmtNt9TIyXT19XSU/PTFV2PUAwccDLwUZA3UMU1IbV8vrtGlpPJBJMRF04bgaPH2vH1gWNuVzMjnY4RaiNNtSelWG12HGu2Ys/BJnxeWoNd5Q2KNP+cW5yPLbuqI16O6Ga1IrNymCVLgWihcbuI97zDAaQlJ6ClXXtZm699XIaJowfBYtbOqfqoIalqr4JQ2nllNaypqQmPPPKI89833nij8/bx4ydrvgcMGOB3ORbLyRKOtraTH1wRywhGdXU1qqvD23mXlZWF9Tg5TR47GL+77Uw89eqXOFLXHvD+w7OTccePTmcARIdEjjUTmYYsR3BGdLM8UctTIyXT19XSwmHaDYK4ykqzIHOgWVj5FemDHMHCETkpWOYyVlbkdIxAI3yllPYtu6qd420T4o2KB2tdAzV9gSb/y/RcZxH7/qKCLAzPSYno5EuOZrUis3IYBCF/5JqIFypR7/mW9i4MSkvCsZYOIcsTpbSiEVabHVabPA2UQ5U50IystMhaEWgNgyABnDhxAjfffDNqavqueEybNg2XXXaZ8/ddXSejh2az/xMr19+7Pk7EMoLx1ltvYeXKlSE9RusK89Kw6u5znbPjS3ZXux0YGQ3AzIlDODte5yxmE2ZMyEHJrsivPM6YIC4NWY7gTIPgHbGorBc1UjJ9XS21mE3Iz03F4RrtNemy2d0PDC8/uwAvvLNHpbWholEZ2H2wSe3ViMjNV07ExTPz3fZfosZbhjrCV0ppXzR3XMTP7SpQsDZQoMYfkSN5DQYD7lg4Bfev2hzWSaAczWrVzsoh/bPa7Gho6YCtqwfmhDhkpSX5fA9oIetIdHnusZYOYcdyIlXVB77Aq5Qrzi5UexWEYxDEj7a2Ntx00034+uuvAQA5OTl46qmnYDSe7EURF3fyxCDQTs01PVb0MmIZZ8fHhlPzM4QEQU7NzxCwNn2kGnER6dFS1kNWGjSZ9ZKVlgSjAVDqGCHQ1dIbLxuPh5/7XJmVCYFn47BLZ49kEERFk8YO1n0QRGQ5h6tIUtpfWr9X6Lr4C9aGGqjxRmQafmFeGh5YPC3kdZKrWa1WSyhJ20ItgZNoIetIjvJcrQVAAKCuyYoROSlqrwZM8UZceqbYEj4t4Fm0D/X19bj++uvx1VdfAQCysrLw4osvYtCgQW73cy1Psdn8pzxLE2UAICHhZN24iGVQH86Oj177Dok5kdl7WOwkgrnF+UKWI2U9aLX5nsVsQnqq2GkGvgRztfS00YOET1cQobbJ6vbvPYLetxS63CwLdlc0KP68cUaDsIZ7ckwRASJPae+yiyuP8/c3hhuo8UZk88/JYwdj+dLZGB7kCUqkzWr90WrjcECZhrUUunCnumilcbuWJqbITeRUqnDdtmBSVF54ZyaIF99++y1+9rOfORuP5uTk4MUXX0RBQUG/+7r28Ojo6EBqqu+mMVbryYPjgQNPNswTsYxgXHnllZg5c2ZIj5GUlZXh0UcfDeuxRJHScrqvHDXiWmy+Z7XZ0dQqf2+LBJMxqKulBoMBD90wHXf+aaOmxt3Z7e4nEGpOCYl1NQ1W1DRYA99RsBlFuYADQjPERFN7hK8rX3+jiOkPnkQ2/yzMS8PKu+Y4y3E/L3U/mYy0WW2wtNY4PNwMA1JGuCVwDyyehsyBZk1kHWlpYoqcsjMsQjOOw7Fo7qmYc/qwwHfUIQZBPGzcuBHLli1zBhtGjRqFv/3tb86RuJ5cf15TU4Ps7Gyfy5b6igBwu5+IZQRjyJAhAafPEGlRQ0uHsBNdhwNC033lqBHXYvM9kdvArxCfI85oQHePdqIggzOTnbfVGitM6po3ayQccGgukOlKS8E5X3+jXIGa9VvENf/UQjmulhqHh9Nkl83qlRPpVJclV04Uuj7hZh2JfM97o2Tpry8GAHmD+44nRF0YW3DeaLy9sQL2IKZqmuKNuG3BpKgNgAAsh3Hz9ttv45ZbbnEGQKZMmYLXXnvNZwAEAEaPHu28XVlZ6Xf5R44ccd4uLDzZYEbEMoiimZbTfYGTNeKhXp3wVSMuBVbCvdohR/M9pdJPu7p78fhL25zpt75IV4m1FAABgNEuY3HVGCtM6pKCj1IgU8SyRNNScM7f3yhXoObz3dWylGWoVY6rlRLKnWX1uH/V5qADV1KGwc6y+rCej0IjYqrLGx+LnRQZbtaRyPe8L4PS1S23PSU/3flZFLU/ue7iU/Gv5fPw08sm+Ax2Zg4046eXTcC/ls+L6gAIwCCI09q1a3H//feju7vv5Ojiiy/Gyy+/jLS0NL+PmzRpkvNEY8eOHX7vu23bNgBAbm4u8vLyhC6D+rD+NDqJqOGWm1QjPiw7OfCd0Tey2V+NuOjASqSUTD8NpnZfS+n8rpIST55AxFLdMrkHH7UYyJSIDs4lmMI7lPT3N8oZqOn9PhswmojuTRWqSDMMAgW9KXIi9pk1DVZh/Y6MRgMyUhPDfryo97w3vQ4gXuUeGPsON+OJl7djV/kxABC2PzEajfjB2QV46ZcXYfXDF+DhG6fj5z+chIdvnI7VD1+Al355EX5wdkFU9gDxFP1/YRC2b9+Ohx56yHnAfd111+Hpp58OqvFobm4uJk2aBAD46KOP0N7ufZzRjh07cOjQIQDARRddJHwZsczhcGBX+TEsf3kbFj78AZb+YQN+8cxnWPqHDVj48AfOLxE9nEiTd3oqGzYg2JUNfD8tNd/LSktSdDtItfu+aCmd35VrllGs1C2T9+Cj1gKZEtHBucXzxgn/G+XOompWoL+RktTMPBKRYSCqYS35JmqfKWoz9fY6cM/KzWEHwES85/2paVS+n5Qn1+a0ALDg/DFhLWfB+WO8ftdmpVkwbVwOzp82AtPG5SArzdL/wVEs5oMg7e3tuPvuu9HT0/flfeWVV+Lhhx8O6erL9ddfDwBoaWnBI488gt5e91qr48eP45FHHgEAmEwmXHfddbIsIxaF2+Ga9Eb7URBnKnBdkKnAdcGlAkvN9x6/uRjFE4f06xIeZzSg+LQhePzmYqy4a45sJ04WswnjRopPzfdnfckhrz+32uyqNQkLxDW9NystScU1IaX4Cz5qKZApER2cmzRG/N8odxaVTeB0Gy1QM/NIRIZBoKA3RUZLJXCuIimJivQ9ryeVtW24d8UmvP6f8MqR3vxkP89/vIj5xqj/+Mc/nM1GBw0ahAULFmDfvn0BH5ebm+sslZk3bx7Wrl2LzZs347333kNtbS0WLVqE7OxslJWV4bnnnsPRo0cBALfddhuGDetfYyViGbEmkg7Xch5gknha637vKdJU4OVLZ/sNXmih+R6gfCjK1ySfhpYOhdckFLyaGQtCmfwh5xQRq82OhpYO2Lp6YE6IQ1ZaUsDvAzkaaVrMJqF/o9wnNmZT9J04SZlHoe6LIs08EpVhsL5EXMNacqfl/lS2rh78ZvU2LL1qIgrz0oL6DpOE+57Xo64gmpn6ImVbrbhrjtt3bzj7j2gS80GQ119/3Xn72LFj+OEPfxjU45YvX4758+c7//3MM89gyZIl2L59O3bs2OG1t8fixYtx0003+VymiGXECrlPOklbstKShHXrNkbY/d6TqFRgz52TLxazSZWdlNVmx97DTYo+p68Relo+2Cn7rgnDsvvGnGs7WEOhuuf6M5CdYQkr+CgykBnpCFKRIxddG2mK/Bvlnv6Qnqpu00O5SJlH/ia0uBqRk4JlEUxo0fL4ejpJy/tMAOiy9+Dp13YCCH2Mcqjv+VglZVtNKMjkCOvvxXQQpKmpyW3kbCSSk5OxZs0arFu3Du+88w6+/fZbtLW1IT09HZMnT8a1116LGTNmyL6MWKD0SSepz2I2IT3VLKSZXXpKotCDLJGpwFq+CqbWlSRvk3w6NNzwuKyyBedP67vd0tap7sqQUPm5qRiWHXkNeiSBTFEjSEWNXPTVSDPSYK3IQI0nowFCA+FaI2fmkSeR+wVfQW+KnJ5KRsIZoyy95//9WQVeeGePMiuqQ298Uoa/vt3JEdbfi+kgSEZGBsrKxI17MhqNmD9/vluGiBrLiHaxctJJJ1ltdjQJamTX1GoTerUpVlKB1bqS5K106fgJ7QYXOrtOBm1Ej2Im9Rig/omzyBLQCaMyYYo3wh5BirUp3ojxozLCfnwgogI1niIZA6sXSpVQan18PfWRO7NKLqGUsRsMBvzgrAJ8vK2SGSE+fHOgIej7xkILgZhvjEr6s36z92aJoXpvy0EhyyH5NbR0COtI7hA4HlGOVGCtUuNKUpyP0qUue/gnbnIbnH6yu7ro3jOkHiVOHfyNeBc5gtThcOCdTQcjCoAAgL27F3sOylciJ9f0h0uKRwlfppZZzCYMy07BmOHpGJadIjQApPV+XdRHyqzSo1DGKMdSs1QlRPsIawZBSFdi6aSTTtLq1SY5UoG1So1JJ76u2KZYAo8vV8tEl2yetJREFdeERJPj8xnMiPdvDhzDU69+KWQEqTRRTVTKuK8JTiLIcUIT7hhY8k7KMBDBV9CbxJhbnK/2KoQtlDHK4Y4mJ++ieYQ1gyCkK1rNCCB5afVqkxrBGX9Xi+WkRsDQV7+B9FTtBhcKh6U7b2elJYFth6KH6+dTxOcw2BHvD/21BEfq2iNa9+9q2/D2/yr6xngLTBWX+2KCyBOaSMbAknciMwxioUxJTXJlVikllDHKoY4mJ/+idYQ1885IV0Q3GmxutQlpdEfykmOkowhKBWcinQYhQkXVcVmW688pIwZ6/XlzqzZ7guTnprodxFvMJkwbl4Ote2pVXCsSxZwQh13lx4R8DkPt7yHCy+/vFd4TQIlmliKmP0Q6BpZ8k7vJLokhZVbdv2qz5qfF+PL6J2UYmJwQ1CjXQA2CKTTrt2i7b104GAQhXRHdNMtm1+eOINbINdIxUkoEZ0RNg4hUm7VL+DID+d3fv8RDN/SfiKXGugTjpz8Y3+9nF04fziBIFDAagOUvb0dVvfeMjFA+h+H294iUXCcASjSz9DyhKdldHXRWaKRjYMk/KcMgkgwjlikpQ8qsUuP7R4RdBxqw9A8bgg46uzYILq1owK+e/wKdMh/3W8zxsNqir8Hv57uro26ENcthSFdEN80ym1gzqBei6llFXm2SOxV4Z1l9SOnrUjfvnWX1QtbJlSle+d3F9r11Xn+uxZ4gmQPNmFg4qN/Pj7drM2uFQmQw+AyAePL3OYx0xLsWKdXMUjqhue/HU/H6b+Zi1d1zcPOVEzF57KB+fSnijAYUnzYEj99cjBV3zWEAREaR9m5hmZKyoqFURAo6P/hsCW59ckPAxp0OhwPPvrVL9gAIAMwqyo3KMtjeKGwhwEwQ0hXRjQbTU9mESy+0OtJRrlTgSKdBLF86W+iBf7oKTT57HcD+yiaMGe6+zQryvJfJqCU+zoCHbpju9SD+f18dVWGNSLRQsyh8fQ5FjHjXErWaWVrMJgzPMWF4Tirmzhop6xhYCizcDAOWKanDM7NKjlHUSglmlOuHXxxGZZ0y37ufbD+iyPOoIdpaCDAThHQlKy0JghqRw8hO5LpSerBRkyMdRTQb80wFjvRqsRzdvM2J6pxQbPOSDZKVZtHUZ/dHF53i9SDearNHZTMxCo63z+H7Ww6rt0Iy0EozSznHwFJwQs0wGJGTguVLZ/s8cfVHrQbh0cQ1s+rhG6ervToR8TfKdWdZPf761i7lVyoKRVsLAWaCkK5YzCbMKMpFya7Ix+TOnKCNgzcKjqiTh/UlYps7RdpszFsqsIirxVI3b1F/q1rj5mobTnj9+Q/OKsCL74oZ8xmp1/5ThsljB/cLhDS0dKA3CsfKUfBcP4ciR7xrBZtZkqtAzSjjjAbMKMrFvFkjMaEgM6QSGC00CI9WU0/NjrivS27mADS1dqDTHtnFqnBJQecVd81xbv/yqhb8dvVWREs/VFO8EQYD0KXSaxxtLQQYBCHdmTsrX0gQZO6s/MhXhhQh8uRBGukoMgAmOhV4/eZDQtbrvS0HhQVBpHGvSp/TW8zed1Mjh2gnJdPe3YvfrdmO/7v/fLeD72jq+0DhkwKvDS0dUTWdgM0syRvXZpSiypS00iA8Wom4mHPPojPQdqJL1aarrkFnKaNWraCMaNLxYsqAhKAnZWVnJKGuqUPcOijU/0kpLIchHWKEP9aIPHmQRjqKNnnsYNxy1WlBNxA1xRtxy1Wn9UsFliPgI4LFbMKsoiFClhWKMcPSvf78w88rFV4T/2obrdhd3uD2M7WyZ0hbpM9hNAXF2MxSXtFS7iGiTElLDcKjmXQxJ9T9luvFHC00XV1f0ncRKZr6L7mWjknZVo/fXIziiUP8NoW++7rTVVpjfYiukA7FhA9KDgtZzvufH8bE0f2nOZD2iD55kGOk486yevzlX98E3bfE3t2Lv/zrG6QlJ7oFQhpaOoRlWzi+7+YtKutFVBPYUIzN79/IVqtlBa99XOb2naJW9gxpixR4jZagGJtZyoPlHv1prUF4tJOCGMFmGngbPx2oJEpuW76pxra9tfh0m7YulITKX+lYsNlW+yub1Vp9XWAQhHRF62URJA/RJw+iRzqKPFBraRM7UlVkN28RE3pC5a0BqlbLCkorGt2+UyxmE9JTEtHUyjG5sa6jsxt5g5NhNBo0+d4NlreTHoocyz36E9Ug3LVHBAUmoq+L50n6jn11+MM/vlTsb3jsha2KPZdo91x/BvJzU4MuHbOYTX7up999jRIYBCFdkaMsgkEQ7ctKSxJ28iB6pKPoAzXRWSoiu3mLmNATirRk7zt3LZcVVNW3Y8zwvhIeq82OZgZACH2BXIvZhJkTcnU7jvKnl03AZWeN4gmlYDvL6kMKogczEjQaaLFBeKwQ2dfFYjahK8qmisgpO8MS0oUrq82OhpYO2Lp6YE6IQ1ZaknP7MAvVPwZBSFf0UBZB4ok8eRA90lH0gZroLBWR3byVHu95vN3uNVtLy2UFdU1WZxCkoaWD12EIQN/7YnhOqiolZSLkZg5gAEQGLPfwTasT4WKN/0yD4HxRWitobaJfMMeAwZbOJUbZNBfRGAQhXdF6WQTJR9TJg+iRjqIP1NJSEoUsT5KeKibrxWqzo2S3sidvDnjvaaKXXhtazlghZX264wimjstBUUFWxKMo1eBgOE84lnv4xtLn6GG12bF9X53aq6Eb2/fUwuFwuGV0uAqldC47I0nu1dU1TochXZHKIkQQXRZB8pJOHiIheqSjHAdqWWlid1qi3uMiG7aGorm1/yQfi9mEcSO1OZozO8PivK3ljBVSlvT5lkZR6u29UdtoRWlFo9/7RMtEE6WIzCKMNnqYCEfB0WoPL61avX4vlv5hAxY+/AGeeHk7dpUfg+P7g69QJyWJHI8bjXgZnHRFy2URJC8Rc+xFj3SU40BNq4E5tbIafPU00ep1z6TEkye3eslYIfm59qCSRlGGWgaRYDKiy65cTx5P72052K+sgBNNwqdUuYe/ngFaxdLn6MGMyPB4NkO+6tzR+Mu/vuHrKRCDIKQ7Wi2LIPmFe/Ig10hHOQ7UGlrERu5FNf91qHQm762nidVmx97DTSqsTWCHa1oxLDsVQF/Q9rTCLHx9oEHltSItcD0RC2cU5ZL5E/HgX0tUu6rqWVbAiSbhk7vcQ+/BKZY+Rw+9Zb1pUWVtG55+7SvVL6hE2+couv4aigkiaqpFl0WQckTMsRdFjgM10VesRC1PreNks5edrpbTa7+rbsWZk07+u4hBEPqe5wFkOKMo1Zwu43CcDKpyoklk5Jx0Fw3BKS1PhKPQtJ7oUnsVooLaAZBo/BwxCEK6o8WyCFKWiDn2IshxoCY6E0RU5N7WqZ0UTC2ng3Z0uQedKo4eV2lNSEuMBu/9eUIZRelwOHBKfrqq02WaW23otPdwokmE5Cr3iJbglJqlz3osH5KTv9cj0GvlcDjw7Npdaq06CRSNLQQYBCFd0lpZBClP5Bz7cFnMJsyYkIOSXZGnNc+Y0LeDyUrrO2EScZHQKDByr1ZNtc3L82o5vTYp8eT7zmqzczQgAQAmFGYF/E7yN4oy0NV9pdi6uvHcut2caBIhObIIRY3b1UoQQMnSZ6XLh7TyGvsS6PUYl58BBxzYe6jJLUPB87US0fyXtCEaWwgwCEK6paWyCFKXiDn24To1P0NIEOTU/AwAfX9LeqpZSDf79JREYa+LWrWg3hqjiszAES0nc4DztpbLdkhZ554+LOB9fJ0YhXp1X05HG9qFTTTx18wz2onOIsxITcQ9K8PLjgX6AiFPvLQNBXlp+GKPNnqIKFX6rFT5kF76tATzepQe9D6RyPW1ykozY5DgaXekDlO8EeNHZai9GsIxCEK6ppWyCIpde30cDIRqz6EG/ODsAlhtdjR5GQsbjqZWW7+GeeFKS0kUsEah89YY1WI2YVx+hs8DMTUNTj950KeFk1bShhkTcrz+PNCJUVFBJvYeaoK9W72pMK52fntMyHICTTSJdqLLPSqOHo84OFXX3IG65v7lmGr1EFGi9Fmp8iG99GkRGXBtaLGhoYWjiaOBvbsXew42Rd13NoMgpHtaKIug2GS12fHFHjHlDl+U1jqvBItqgOXayDBSWSpd0UlP9V7Oo938ipNrpuWyHVLOaaMHYUBSQr+fB3Ni9I2GmuoaDQZ8fUBMEMTbRJNYI7LcY/2WQwLWKDCle4jIWfosqnwoEL30aQn39aDYEI2Ba6PaK0AkksVswrDsFIwZno5h2SkxfYAVS6w2OyprW7G/shmVta2w2uyKPK8cAQu5GuZFymI2YfxI5dMhvfU0sdrs2HtIe1kgAHD8xMn3nlqBI9KWH54/pt/PdpbV4/5Vm3VVL3/a6Cxh33fSRJNYJpV7RGJETgpGDU0VNm43GFIQoLyqJeB9ReybpdLnYF+rETkpWL50tt8AgsPhwNOvfRVxb5tAo+MjDbQE8xqLEOnrQdFPClxHE2aCEJEuaaG+tqWtU+jymlttwstORPby0Eo5mcjgE5GcvPUk0OsV1xlFudi5X0wmCKBes2WtEFXu0XjcpnjvIX8NbuXYN4sufRbRsDNQbxtRgRYlmghv31enq4AsKc9zFHc0YBCEiHRHK/W1og/ibfYe4dkDoqbDWG127D3cJGRZofC209XyyWN2hsV5W/S4Y9IXbz0J9HrFdUROivBMMLWaLWuJiHKP/ZXNMq6hb96CAHLum0WWPr+/5XDQ9/XHX4mAEoGWSLgGq0Q0d6foF22Ba5bDEJGuhJpGLtXX7iyrF74uog/izaa47yfdiOklYTHHCYvaqzXppNlLk1gt99rIG5zsvK23E10Sx1dPAj2OjJSCOYPSLTAaxVyRjhM4vlvvIi33UPP7cH3JyV4kSu6bIyl9ttrswsqH/JUIiAy0iFZe1YJbn9yAB58tYQCEYhaDIESkG1qrrxVdupKeaobVZofVJubk2WrrEVbDqdYJvb8RuVoXqF6copO/ngSiToyU4hrMkSaaiDCjKDeq0qojJZV7PH5zMYonDun3/RZnNKD4tCF4/OZirLhrjltwTc3vQykIoLV9sz8iA/q+etsoFWgJhx77EZE22KIsE4S5iESkC1qsr81KS4LRAIg4njJ+f2X0gODU5vIjLZg4elDEy1HraqOvEbmixkuK5lq+o5EWKqQAo8GAaeOzcdmZBT57Eog8MVLCiJwULPMoV7h41gghn7u5M/MjXoZSpKldtq4emBPikJWWJEsAJ9xyDzW/D3t7HWho6VB83xzJNlGi+bgcgRYR7zm99iMibTh+okvtVRCKQRAi0gUt1tdazCbMKMoVkk46c0LfldGKo8cFrNlJB6uPCwmCSFcblS6J8TUiV9R4SdHcD4gZBYkVvQ4Htu6pRZzRCAccXps+qlVSJjEYgFkThzgDEO+XHA6jwWRsvKfVbrzdVxYZ/Emvmt+HSu2bRW0T0QF9b2Wxakx5CxQY0ms/ItKOzi5mghARKU6JRmbhmFc8UkgQZF7xSACAvbs34mW56vJSThIONa42Gg2+G7tK4yW1nNKr5d4lJJ7DAb9NH9U++TAYDLho+ggUFWZhd0UDHHD0K9nqdTgAB+CA92DNByWHhazL+58fFhKclUO4zT2VyhjxRs3vw62ltUKW42/fLLLhqsiAvq/eNkoEWoDQAkN67EdE2pKYEF1hg+j6a4goKslRXyvq4FTEwafrGM3cLEuAe4cmNys58J2CpPTVRn99A6Txknf/+TN092iz94Za2TOkPqnp4wOLp2migSXQd6L4mxe3ImOgGbWNVq/38RfI0fL3sCg7y+pDKheorG3DPSs2YfSwNHz7XbMqo9qByMfthivOaMDXB8SMTfb1nghnm3h+9lyJDOj72kcpEWgJNTCULriHGcWegQMS1F4FodgYlYg0T4lGZuGSDj7DPcHxHKM5bmSmsHUDgFPz04UtSwr4KOWS4lEB76Pl5HyL2YQzTu1/EE6xwbPpo8Ws/nWnru5enwEQT57TO7T8PSxCuP0S7N292Huoqd9rI52EPvhsCW59coPszT+lcbtKBtsmjs6CqP7P3t4TcjVcnVucH+Zaups3a6TXn8vdRDicSTzfHGgQsj4Uu3yVJ+sVgyAUVaw2OyprW7G/shmVta1CO2qTetSorw1FuAef3sZoZqVZkCoo2p46IAFZaeIySyIN+ITCNTvGG6m+2a6xLBDPtOX05Oi6ckKhkZo+OhwOWG36q6e2dfXgt6u3oryqRfPfw5GQu1+CnKPaXYU6bjdSMwSd6Etc3xOimqF7m9IlIqAfaB8lV6CFzU1JDQb4Lk/WKwZBSPccDgd2lR/D8pe3YeHDH2DpHzbgF898hqV/2ICFD3+AJ17ejl3lxziuUseUqq+NRKgHn/7GaF517mgh63S1oOW4Uupq45XnjvabPq7F+mZvacvb9taptDakFd/VtmF3eQN2V+jzSmynvRcP/mULvqsR27RZju/hcCnxfaLUONhgxu3OmpiLwemRBchH5KRg/MiMiJbhyfU9IbLhqifRGZzeyBFoYXNTUsu4URmaK1+MlHb2QERhENksi7RLdBp5UqI8J/DSwWdpRSPWbzkUxuSFPj84axTWvL83ol4X8XEGXHZW4HKScEgBH3+fvUi99d8DOGdKns/XSFSjXJFmTHBPW7ba7Ghui66RchSe3760TZeZIBJrZzf+/OY3wpbnq89B0OsjuAmpUt8ncoxq9yaYcbvlVS1h9xCRggCD0i2y9b6Quxm6FNAPNavCWwanN5H2afEWaNFi8J9ig5zfV2phEIR0S3SzLNIu0ScPHZ3yXUUJ5uAzEKPRiNt/OBlPvfpV2Otx+w8nw2iUL9kvUMAnUv5GJops0CjSqfnuV0XLjzSrtCakNXoOgMjBX9NjX+QaW6v094noUe2B+Bq3KyoIIEeTUaWa8IYa0B+Rk4JlIVxMEx1o0WLwn2LD3kNNmmxmHQmWw5AuydUsi7RJr7XoFrMJw7JTMGZ4OoZlp4S085hz+jCcP3VYWM97/tRhmHN6eI8NlUP6T4Zys/Ulh7z+XGSDRpH2HnZPuy6vEls+QBQtfDWU9KW8qgW3PrkBDz5bgpJd/QOukTQhVeP7xNd3m9JElHHK0ftCySa8wZQPFZ82BI/fXIwVd80JOZtYVKmsVoP/FBu02Mw6UswEId0R1SxL7nRUEkcPPUFEK69qweZvwru6tvmbasybPUrW0q9ApWgi+LqCp9V66C9Ka93W197dq/IaEWlPTobFb0NJT3JnfarxfaKlEcGRlnGKHhMPKH/hQ0QGpz8iSmW1Gvyn2KGlZtYiaP9MgMiDyGZZSqWjUmSy0pJgNAAi9v/GCGvRlaD1QF+oJyXhkq48eB6AKjkCMhSe65uRmqjyGhFpT8PxDlRUtaBwWODx3ZFmfS5fOjtgMFiN7xNf321qiSQIIEfvCzUvfPgqH4qU62vc0GLFwaPH0XqiC6kDEjBq6MCAk9y0Gvyn2KGHC4ihiK6/hmKC3M2ySHssZhPSU81CUvHSUxI1c+Dpi5YDfUqP5/N25SErLUlYMz7RXNc3O0PceGKiaNHd48C9KzfjoRum+83UUCoYrNb3iVavqoYTBBDd+0LkNom0Ca8okfa00Wrwn2KDVj5HIrEnCOmKHM2ySPusNjuaWsXUIja12jS/3UUG+kRSYzyftysPFrMJMyfkKrYOoXBdX3OitoNtRGrp6u4N2J9LzhGprtT6Pom2q6oix8SL3CbhNOEVTURPGykwRKSGU0dG34hcBkFIV5RslkXa0dDSAVF9Nx0OKLbdrTY7Kmtbsb+yGZW1rUEFX7Qc6FN6PJ+/0iVRzfhEMgBu68srd0S+SZkavpoqKxkMVvr7RKtXVcPZZ7kS2WRUjoarathZVo/7V20Oet8p9bTZWVbv9nMtB/+J9Ci6wtAU9fQ6JYQio6ftHmnKqxyBPlHRe6XH8yUn+U7LnjAqE6Z4o6aaj5pMRrf1zUpLgsEAYQE8omjjq2xPZDC4ZFd1wCakIpp7hkIL2QkSf/ssgwGYNi4Hl501KujRw6KajMrRcFVponvaXDwrX8g4YqJQlVY0aqaZsyjMBCFdicUpIaSf7S4i5VWrAR81xvO1nujyeSWy9GCjpgIgANBl70VDi9X5b4vZhFlFQ1RcIyLt85apITIY7HAAT6zZjl3lx3xmnUjNPZXK3lI7O0ESaJ/lcABb99TiwWdL8NPffowDR5pDWn4kY+Ij3SbeGq4qSVRPG/f3LCPqpJ5oy55nEIR0RWRNpFbTUak/PWx3USmvWg34qDWer6q+3evPlc5KCdbB6la3f2uxbIdIS7yV7YkOBu8sO+Y3+AycbO4pdyBE7ewESaj7rPrmDvzimc+wfstBmdfspHC3ia+Gq0qSo6fNByXfRbpaRGGLtux5BkFIV6KtWRYFR+vbPdKUV9eDcq0GfNQaz1fXZO33MzWyUoLV2t7p9u8JozIRx2Z2RD5568/V0SlP82pfwWdJqM09Q6V2doIk3H2WwwH8de3ugIGQSHuLuBLZcFVJonvaaHm/R6RHrAUg3ZlbLKYmUivpqBSci2eNELLd587Mj3xlXIge4ygFfET8rSIDPlpq8qlWVkowEj1ep9KDjejR6LoSaYXnFcbjbV2yPZevfgsSqblnaUUj1m85hM9L3ctE4owG5A1OxndhXOVfcP4YVbMTADFTvp57ezfGDk9H4bB0t+VG0g/Ln2C2yYyiXMybNRITCjKFBpmsNjsaWjpg6+qBOSEOWWlJAfercjQ41/J+j0iPGAQh3YmGZlkUDm1eTReZ8io1B9RioE/KUFH6ICw7w9LvZ2plpYTjnU3KpY4T6ZVn2V5Xt7yfcc/gsyd/zT2Pt3fi13/7IqznffOT/Zg8drDuyzT6+qzswPMPnA+DwYDyqhY8/dpXPpcr9cPasqsaw3NScMfCKSG/BqIargZDiw3O9bTfI9IDlsOQ7ui9WRaF54OSw0KW8/7nYpYjWb858PjFYLznkl4sTT6JhCneiPGjMiJdLSe1xvNlpCb2+5mWslI81TScLN+x2uzYvqdOxbUh0j5vZXsplgTZn9ez34Ivrs098wYn49m1uwQ3u1SWqDKNuiYrSisahfXDCkUkDVcD0WqDcy3v94j0iEEQ0iU9N8ui0MmRWiqCXOslYvKJvbsXew42iVg1JzWafHZ09j+YFNk3RTTX6TANLR3o5XxcIr+8le0V5A1U5Lm9TabxR45ml0oS3Vfitf98K6wflhZoucG5lvd7RHrEIAjpll6bZVHo5EgtFaGhpQOiznEdjpPjx0Q3VBNFKkVTkrdu5GplpYSK6ctEgXkr28tKsygyvS3UoLhWv5uDJbqvxO6KRl1nxbjSeoNzvez3iPSCQRDSNalZ1uM3F6N44pB+O504owHFpw3B4zcXY8Vdc5gBolNypJaK0NLWGfhOIWhutWk26wU4WYoWaalOKHyN+NXq6NnUASfT+Jm+TOSfv/5cl59dIPvzhxIU1/J3c7C0FphVMyvGlagG51JAx2I2YVy+mHLUU0dmODOltLrfo9jg63hMr6Lrr6GYpGSzLFKHHKmlIoiemW6z98iS9SL6M6BUQq7RAJ9Xg0U0SJbDgKST762stCQYDBCWLUQUTRID9Oe67MxRWPP+vohLAwMJ9D0uTeY4XNOq+e/mQLQYmF1fcsjZFFwtcjQ4l+NrX6v7PYp+Bvg+HtMrZoL48fDDD2Ps2LF4+umnA963t7cXb731Fq6//npMmzYNEyZMwJw5c/CLX/wC27dvD+r5RCwj1snZLIvUI0dqqQiio+JmU5xms16Ak1fLumQ+KZGkp/oOYkbaIFkurid0FrMJp5/C8jsiT0ajAQ8G6M9lNBpx24JJsq+Lt+9xh8OBXeXHsPzlbVj48AdY+ocN+MM/vhT6vKKD6MGQArNaolZWjCvRZU5Wmx17D4nJcNlzsNH5+mh1v0fRb3xBZtSdUzETxIePP/4Yb775ZlD3bWtrwy233IJt27a5/by6uhrV1dVYv349Fi9ejPvuu0/WZRBFK6kWVsTYWG9N+MKVltJ/ckkk0lPNwuujRQZqRFwtC4VUHuRre0kNkn+7eis67coEZgJxeKzGFecUYse+8KcgEEWjs04bGlR/rjmnD8OuA8fwyfYjsqyHt6B4oHGvoqiRWm4xmzBtXA627qlV/Ll9CScrRsrOsXX1wJwQh6y0pLD363KUOcnRL0z6+6T9Xjj9S4joJAZBvNi4cSPuuOOOoO7rcDiwbNkyZ/Bi9uzZWLhwIbKysrBv3z48//zzOHr0KFavXo2MjAzcdNNNsiyDKNrNLc4XEgTx1oQvXFlpSTAaABEZ0kaXg3E5limCqKtlwer1OPjzZvLYwXji1jPxuzXbUdto9Xk/pSR4nNgUDFVmygWRnmz8ugrnTh0WMBBSXtWCz3YelW09pk/Icft+2VlWr8jJpciMxFBddtYoTQVBgOCyYhwOB3ZXNGD9lkP4orTWrTTJaDRg5oRczC3OR1FBls8SK2/kKEGVO6NTGgygRLCOCDiZkRRN2SAsh/Hw0ksvYenSpbDbg0vNe/fdd7F582YAwPz58/HCCy/g/PPPx6RJk7Bw4UKsXbsWhYWFAICVK1eitrb/jkfEMoiinYjJJP6a8IXDYjZhRpGYbu0zJ/RlqFjMJqSnijk4Tk9JFLbDEj1aMVjBHBwX5qXh/+4/Hz+5ZLzqIwQHeZzYiJpERBRNHA7gsRe3+h2R6nA48Ls122UtvxuXf3J/EO50kHCIzEgMVVFBFhJN2jr8D5QVU17Vgluf3IAHny1Bya6afkGL3l4HtuyqxoPPluDWJzeENHpXjoCFEn3MXAcDsOyS5OY6wTBaaOtbUEWHDx/GkiVLsHz5ctjtdsTFBfcFtnr1agBAcnIy7r333n6/T0tLw69//WsAQGdnJ9asWSPLMoiiXaS1sOYATfjCNa9YTGaJtByrzY6mVjE7mqbvy0lEED1aMVjBpowbDAbMn1OIP/78LGRnWGReK9/SUtyDILWNJ1RaEyJts3f34ndrtvssAdxV3iB7dte+w00AIp8OEiqRGYmh6ujslr3ZbCgCNVzcWVaP+1dtDjrjobK2Dfev2oydZcGVIcoRsLCYxSbaJyV6X0dpMMANl44X+nxE3qjRx0hODIIAeOWVV3DJJZdgw4YNAIDCwkJn0MGfI0eOYO/evQCAOXPmIC0tzev9zjjjDIwc2bfD+/DDD4UvgyhWFOalYcH5Y8J67ILzx8gyIll0hooctcQiqFF7HE438sK8NNx29WnyrFAYqurb1V4FIs2qbbRid3mD19+9/p8y2Z//89K+Hg5K9jsSnZEYqoaWDiHllqIYDEB1g/dgcbjZObauHjz+0ragMkLkaLxutYk9Wezo9P/3szcIUegYBAGwe/du2O12JCQk4Gc/+xnWrl2L4cOHB3zcl1+e7BQ+Y8YMv/edNm0aAODo0aOorKwUugyiWFFe1YI3P9kf1mPf/GR/SCmywRKdoaLV6TBqdKMP5TjddZrDw899Lts6heqEylMPiLTutY/7BzusNjtKD4qZruGP1MNBqX5HcmUkhkJrJ8y9DuBPr33VLyMo0uwcW1eP1+V6khqviyCVOSm1H5f2ey+9Vyr0+YhiAYMgABITE3H11Vfjww8/xJ133onExOAmPpSXlztv5+fn+73vsGHDnLcPHDggdBlEsUCpA6JwSN3aQw0UmBPi8IDHmEglaonDITq9N1jBZLKUV7Vg6R/+66wXV/Mip+frPSCKmogRyaG0orFf2V5VvbJTqJTod+Tt+14NWhyv+l1tG0or3INeIrJzvC3Xm7nF+RE9j0Qqc1JiP+7aJ2V3RZPQ5yPyxhZl5TCcDgPgkUcegdEYejzItUHpkCFD/N43N/dklNn1cSKWQRQLRB4QFRVmCVqrk0Lt1j4iJwXLFk7pd0AspeaK6L8hcgJB9TF1yjoCZbLsLKvHb17cKmvzxFB41m4X5HE6DFEgVfXtGDM83flvJSc92bq6Ze935Ov7Xgme42Qt5nhh+xiR1pcccts3i8rO8VyuN1JZayTHGK5lTllpSTAYIKS01WDoXxaq1BQjIlc2e3S93xgEAcIKgADA8ePHnbcHDBjg974Wy8lGfW1tJ79kRSwjWNXV1aiuDm/EaFmZ/LW5RP4oeUAULqlbe2lFI9ZvOYTPS9272McZDZhRlIt5s0ZiQkGm15RoKTVXxDhgkRMIyquOB76TDPxlspRXteCxF7dqqsmfZ+32kCz/3+tEBNQ1Wd2CIEqJMxpgTpD/ULhXhgxEfwKNk01PSdTcpIfPd9c4R3CKnEbmulxfpLLW+1dtDiuw4FnmZDGbYIozCgnOm+KNbuuu5BQjIldmk/ayyCLBIEgEurq6nLfNZv9XW11/7/o4EcsI1ltvvYWVK1eG/DgitSl9QBQJqVt7UWEWGlqsOHj0OFpPdCF1QAJGDR2IrLTAk0vmFucLCYKInECgRqDBXyaLND5TSwEQoH/mytf7j6m0JkT6pdSEpxlFuUhLCa4EOhJH6tpx/6rNeGDxNEweK+840/KqFr8ZiVIfFK2R1stiNgmdRua6XH+kstbfrN6KLnvw+5UEk7FfmVNDi1VYdmKXvRcNLVZkpVkUn2JE5Co9VUxmsVYwCBIB1zG6gZpcufYhcM08EbEMominxgFRuAJdgZs5IRdzi/NRVJDl8zMvOjVXhJxM5cfO+stk2VV+TNGU+XC9p1DDRSI98wx6DMuObOJWsObNGim0BNEfaWLJ8qWzZSuL0XuZhBREVrVBeKhvAy/3rxCcOXmwuhVZaRZFpxgReRJVXq0VPJOOgGt5is3mP6re2dnpvJ2QkCB0GUTRTqsTUzy5Nior2VXT76C6t9eBLbuq8eCzJbj1yQ0+p9WInjgjwqihyve28JfJ8upH2i/Rs9rsOHhUnTIiIj3JG5zs9m+L2YTxo+QdIysFikVOBwlEzgbdSpZJmBPicJoMZaVS+aMaDcKl1y/UDI6u7t5+43jbrKFna/vT2t53/K/UFCOiWMBMkAi49vDo6OhAamqqz/tarSevWA4cePJkQsQygnXllVdi5syZIT8O6OsJ8uijj4b1WCV5NgDLSkuS7Yo/KUerE1NchXoFrrK2zW96tJSaG+pBrVwTCBQuafebyWK12bH3kPa74Ss54YIo2iy8cAwe+qs84649A8WiShCDIUeDbiXLJKR9TFycAd+UNwhbrmv5o9INwkVNn1tx1xwYDAakWMReqExNThRaFkwUDjmzqNXAIEgEhg4d6rxdU1OD7Oxsn/etqTn5xeV6PxHLCNaQIUMCTqDRIxHlB6RtIjutG710Wo9UuFfgAqVHi5o4I4KS6dWBMlmO1Gk3uOAaYNNDuQ6RFng7uJ5YOAg5mRbhnyOj0dAvUCyiBDEUoht0K1Um4bqPcTgcQl+z6eNznO8Bi9mEGeNzULI78pP+6RNyAp64iZ4+J3oq2KghqULLgonCIVcWtVpYDhOB0aNHO29XVlb6ve+RI0ectwsLC4UuI5aJKj8gbbOYTcgQ1JApPdUsNJIt6gqSr/RoaeLM4zcXo3jiEBiN7oGBOKMBxacNweM3F2PFXXNkqzUXnY3j73kCZbJotSZa5Ehiolji7eDaYDDg3kVTYYoXfKjqcGDsCPdJNJGWIIZKatAtiqgyicyB5qD3MdJrZhR0bcmzQe0p+WKmBZ06IiPgfUROnwP6GuGKkjnQjKw0i277vFD0kCOLWk3R9dcobNKkSTAYDHA4HNixYwcuu+wyn/fdtm0bACA3Nxd5eXlClxGrRJcfkHZZbXY0t4rpZt/cahM6HUb0FSRvXCfOWG12NB63oaOzG0mJ8cgcKDao40tWWpLszxFsJovoemtRPBu5KjXhgkjvfB1cF+alYeGFY7Hm/X3CnqvX4T3zJNwSxLDWQWCDbpFlEs1tnXjhwfPR0dkT1D6mMC8NA5JMaLNGHtDZuqcWN195mvPfXwj6m74orcHl5/i+cCh6+lxpRQMef2mbkOUBwBVn9627UgE6Im+i8SIPM0EikJubi0mTJgEAPvroI7S3e4/87tixA4cO9UWHL7roIuHLiEWRlh8wI0RfGlo6ICoLVDoAFkX0FaRALGYThmWnYMzwdAzLTtF9fWY4mSypA7TZGHruzHy3fys14YJI73wdXJdXteC1/4hvguwrrVsqQRyuwGdXVGq56OlpHZ09Qe9jGlqsQgIgQN9+uaGlr/Spr+9Ts5Dl7jnU5DfrRvTr9+c3dwoLopnijbj0zL4G4VKfFCI1BFNWpjcMgkTo+uuvBwC0tLTgkUceQW+ve1fp48eP45FHHgEAmEwmXHfddbIsI5bIXX5A2qPV6TCiryCJTI8WraGlQ+jy7rn+DPzlnnPx6mMX475FU1FUGHzPnuE5+gguWMwmFAquDSeKRt6++xwOB363ZjvsIU7rCEagtG5HyHNSxa9DsETvH5tbbaisbcX+ymZU1rb63S/JMQoWEN/3qared3mK6NevpkFcD5vbFkyC0dh3qmYxmzBjQo6wZROFIpiyMr1hOUyE5s2bh7Vr12Lz5s147733UFtbi0WLFiE7OxtlZWV47rnncPToUQDAbbfdhmHDhsmyjFiiRPkBaYtWp8OIvoIUTHq0WhOQRB8oZmdYws6UyBuszSDI+pJDmDh6kNvPzp86HOVVu1VaIyJ9OFjdiqw09/KxXeXHZGku7C+tO9Qy20gkJYrZr4nePz78XIlb5qW/BvNyjYI9IrjvU2VtK8YM995jRKuNts+fOgxzTnc/3h+YnOjj3kTy2rqn1m9ZmR4xCCLAM888gyVLlmD79u3YsWMHduzY0e8+ixcvxk033STrMmKFyPIDBkH0QelxecFSKkNFCxOQOjrFZqnYIliexWzC+FGZ2HOwUeAaRU7K5nENSvka80tEJ0knv65e+89+WZ5r2vhsr4HjcMtsw9XRKeZ5RO4fAfQrPZUazG/ZVY3h2Sm440cn+zbJMQoWAFoFB1faOrzvb3aW1WPVv74W+lyibPqmGvNmj3IrEd3KEbmkktKDjUL76WkBy2EESE5Oxpo1a7B8+XLMnDkT6enpiI+Px6BBg3DhhRfi5Zdfxv333+/35ETEMmJBLJUf0EkWswkzJ+QKWZZn88pIKJGhUl7Vglv/EOQEpD/INwHpeJvYg9LjJyJb3sILxwpaE3EcXvrNDEpnc1SiQFI9rnBbbXbZgpzpKf2D4JGW2YZDVFmmyP1jIJV1bbh35SbsLKsHAMTFiT0mHTUkFQCQKji4kpLkO+hl79ZmaXSnR+l2Q4sVTa39g4VESvFXVqZHzATxYfr06SgrC74Zl9FoxPz58zF//vywn1PEMqKdGuUHpA1zi/OxZVd1xMuZN2ukgLXpI3eGys6yevxm9VZ02YOriZcOUB/6yXThE5C6usWeHHRGeLIxsTALOZkWWdLlI9HcamNDVKIQSSe/EjlLFDynkABiymxDJXLcpKj9YzC67L34zYtb8btbZ2P1e3uFLVcaBQsAgzPETiMb7BGMViPoFQ7X0m3R/VeIQlXXZPVZVqZHzAQhXdFqg0ySX1FBVsQNMUfkpAgtT5AzQ6W8qgW/eTH4AIhEOkAVnREiV9pzuAwGA+5dNBUJ8drajdns7t9RohvKEkUb15NfSV2TfMFN1ykkElFltsEyGnxPxAmHiP1jKLq6e/HYi9uEBo6mjz/Z9DMxQew12kSPrE01gl7hkibHcV9CJJa2jh6JAtBqg0ySn8FgwB0Lp4T9HjAnxGHZwinCS8rmFucLWY5rhoo0FaErzKkIXd29+P2aHUInIBUInnLieeU3HIV5aXjohumIj9dQmaDHa671K41Earvi7P7N9rrs8n5upCkkgNgy22CNG5UpNAs10v1jOJpaxY2aB4CWtpOlHqL30+VHWtz+rXTQKxJS6bY2i3YolmRnRFd5L4MgpCsi56SLbJBJyijMS8MDi6eFfKBnTojDA4unuTUYE0WODJVd5Q0Rl3nUNJ7A7vKGiJbhKivNIuzz4u3KbyQ0FAIBPA7elTwpIdKjS2bn9/uZ3CPsXRuxiiyzVVO4+0et+GJPrbNPm+i/4ZMdlc7bagS9IiGVbg9OF1siRBQKA4C8wclqr4ZQDIKQrmi1QSYpZ/LYwbjlqtNgCrIMwhRvxC1XnSa8R4ZEjgyV1z76Vsi6vfofMcuRXH52gZDleLvyGw4tNrYzm9zfByIDt0TRaM/BJi8/lfcz41qOp0a21t5DTbI0Zp88djCWL52taGmMKNLJPtD3vSkyGaT8yHHn663HoFdHZzdyMgeovRoUw8YXiM1e0wIGQUh35Cg/IP3YWVaPv/zrG9iDLBWxd/fiL//6xtnNXg4iM1SsNjv2HPJ2UhC6PQfFHmhfduaooINPvpjijThtdCb2VzajsrY17PXTamO79FT3bBklJzcQ6dFrH/dvQu/Zw0E093I85U+IXU/4RSvMS8PKu+bg8ZuLUTxxSL8grJZDslKfNovZhKKCLKHLliZbaG2fEaysNGaCkHquOX+M2qsgHBsikO5I5QeRNLUS3SCTlCFd+Q/1IMbW1YPHX9qG5Utny1ISA5y8Avf0a18F9d4ckZOCZQun9Fufqnqxzdqq6tuFdfM2Go24bcEkPPXqV2Evw97di9v+uNFlmQbMnJCLucX5KCrICroWXIuN7Qw+mh0qObmBSG9KKxphtdndrjLmZMpXe24wwK0cT+bKG5/kbMxuMBhQVJiFosIsWG12NB63oaOzG0mJ8dh1oB5/fbtUtueOhGuftlNGpGOXwJJOabKFXsuFLGYTxuWnY+/hZrVXhSgqMBOEdEerDTJJXpFe+bd19eBPr30la615oCtwcUYDik8bgsdvLsaKu+Z4Dch8VyP2xF50oGDO6cOwaO6pwpbX2+vAll3VePDZEtz65Iagp9qs33JI2DqIkp6S6DVdtKggC1nsP0Tkk3SVXpKRKt/nxeGA23QYtY4FlGrMbrXZUX2sHZW1rag+1o6m1s7AD1JJUuLJ4zqHTBk6FrN+r/8ajTxtI3W8/sl+tVdBOP1+E1BMk8oPQs0KkLNBJslLxJX/72rbUFrRiKJCsWm2rvxdgcscaA5YU9lm7RK6Pu0dYpcHAFefNwZZaUlY8ebXQZclBaOytg33r9qMBxZP89vDxWqz44vd2mts19zW2e+KNtD3njhrylCs3VCh0poRaZt0lV5y1CMoItq+w004c1JfNogamQEGiB2R66m3txfvbDqItzdWoEmmshs5NLV2OrN0duytE7psabKF6Kk2SkhKjIfVZsfew2JKZYlC5S1jT+8YUiTdCrUB2IicFCxfOlu2BpkkL1Ej7daXKJdBYDGbMCw7BWOGp2NYdkpQO48US4LQdUhOkmeHNef0YfjX8nn46WUThB7MS6VL/jJCGlo6oMW+dg4HfNb5D06PrtFyRHKqOHpc1uXXNJxw3hbdhDMYcn59bfjyCK66fz1eeGePrgIgQF8wDOgLdB8SnBUpTbY4UKmvchLj92WWemzoStHFM2NP75gJQromlR+UVjRi/ZZD+Ly0xm0nEWc0YEZRGLpc0QAATwBJREFULubNGokJBZksgdEpkSPtPt9do1g022qzo6GlA7auHpgT4pCVlhTweUfkiu3qPzwnNfCdwmQ0GvGDswvwg7ML0NBixcHqVrS2dyJ1QAJeeGcPql1ONEIhlS6tuGuO189sS5t207l91flnDWRTOyJfpKv0EpEZZt64nkpKzYtLFM4uazxuE74f+uen+7Hm/X1Cl6kG0b2xRg1Ndb7WdU0dQpctt5kTh8BiNsHWFV0noKQ/nhl7escgCOlepOUHpH0ir4BIXfnlel84HA7srmjA+i2H8EVprdt6B9MEVHQtfEZqYuA7CZCVZnGmMe8qPxZ2AETir3RJzoaCkfJV5x8XxwAskS+uvSAA+b+3kpPcP6enjsxQPAgi+ntsw5dHdB8AkYJhontjTRp9cj9iMukrCV6aZKjXhq5EWsUgCEUVi9nEoEcUEj3STq6T6PKqFr/TYaQmoFt2VWN4Tgru8DIdxmoTu24dncqPAxRZuuQtCKJUQ8FweCsNcjgceO7t3SqsDZE+1DRaMSz7ZNZa6gCxZYGeujwyTfbpvNdCb28vVrz5tdqrETEp+CW6N1Zaysnv5eHZYrMt5ZSTaXFOMpTKttSaZkTkmbGnd/oKhxJRTBJ9BUSOk+idZfW4f9XmoJu3Sk1Ad5bVu/1cLwEfX+QoXfKUlqJMdks4vK3vrvJjqG20erk3EQHAsWb3z0frif6fI5Fa2k6eZFttdnxRWivr88ntnU0HZS8h8iTHBB8paC+6N5br8saPyhS6bDkZcDKD0GI2YYSM5a1EgUh9daIFgyBEpHlZaUn9xs2GK85oEN6Vv7yqJeRJRYD3JqB6CPh409BixdbSGry76aDw0iVPWWna7a9xsLq1389e+0/0jZYjEsqjNLC2MbJyukAaXUbkRkPDyXUblZ08lRBvxMM3TBN+ZVgK2svZGysrzYIUiz4yhmsaT6C0otH5bz1OtqHoYDHHR12mPYMgRKR5UuM6EWYU5Qr9Inc4HHj6ta/CzuCQmoA6vs9x1XrAx1Vvby/WbSzHjx/9CD957GP8ZvU2/OPDb4U+h5b7f3jT2u7etNVqs2PPwUYf9yYiABjk8T3lLaNKpC27qp3BZ9HZd8ESFaBuaLH6nEoll2suHIvCYelYfMk4ocuVXhO5e2NddW6h0OXL6b3NBwH0befWE+JH3hMFw2rrlv17WWkMghCRLswtzheyHKnJmCi7KxqCLoHxRWoCCmg74ONKqTGM3k4UGlq0290/Ndn9YPtIndgGf0TRKDfLPc3aFC9vE8juHjiDz2o0nBQZoK6oknecsDev/6cM5VUtmDJ2sNDlSq+J3L2xRg1NE7p8OUlloWpsZyJX0TYil0EQItKFooIsDM+JLEV2RE6Ks8mYKOs3HxKynPe2HHTe1mrAR/LPT/fjqVe/kr0G3deJglpXboORluxey17XxF4gRP4YDP0bCivR90cKPqtRXjdjQo6wALXoJqLB6Oruxe/X7HBmMIom+jve8wr2h59/J3T5cnKgb5yyGtuZyFW0Hc8wCEJEumAwGHDHwilhX7UzJ8Rh2cIpXsfShkuuJqBFBVnIyYys1tq1q7xISo5h9JXJouVRgS3tPFAlCkV6SmK/z7lSDfjWl4gJYodqYLK4II/oJqLBqmk8gRffLRW6TKmsR3RwxbXvlsj9tlJqGtpV285E0YpBECLSjcK8NDyweFrIJ8HmhDg8sHhav3G0kWpo6RA2rs7hgNC6bteu8qIoPYbRVyaLlhujek65iDSYRRTtmlo7+12pz8kcoMhzf767BrvLjynyXK6+EHgSXpA3UNiyQvWfrUeELq+moS/d3tYlthzmgy8OO2/rsRFudcMJVbczEcARuUREqpo8djCWL50ddGnMiJwULF86G5MF1y4DQEtbZ+A7haD5+87vuysaIh6p6tlVXgQlxzDKUbqkCI9Mo6GDomukHJEcPAPASgU6e3sd2HOwSZHnctXU2omGFjGp5VlpFlkbYCvpaEPfVKD6JrF9n76rbnMG2rRcTulLu9WOrDQLUgcwG4TUk5So3SzccDAIQkS6U5iXhpV3zcHjNxejeOKQftNU4owGFJ82BI/fXIwVd80RngEiET25xGbvOzh7f8thIcsTneqt1BjGQKVLWm6M6jnlgpNhiAJr9hj9aTGbMGuimAbRgag1gcrbOO1wXX52gbBlqenE99NP5Oh/ITV11HI5pS8Jpr7TNdFTc4hCURPhxTmtETOfi4hIYQaDAUWFWSgqzILVZkfjcRs6OruRlBiPzIFmReaZixpxKDGb4mTpMyLitVBqDGMwpUtavpLnOeXi1Y/EjgwmikZSANjV3FkjUbJL/t4NQwapk+LtOU47EpedOQovr9+L7h59lXl4GvB9poMc/S/qmqwYMzwdFrP+Tn0yUpNgtdnxXa24wBlRqER+Z2mB/r4JiIg8WMwmRYIenkRPMEhPNQutV+7tdaDxuE3Ia6PEeL4ROSlYtnBKwMwdLV/Jc00XtdrsqDjKg1aigLw0V3I45C+9izMacMapOXjxXWWaPbvyHKcdCYPBgIHJiYoEquVUMCQVADAiN7JJcN50fh88b2rV32uUOsAktAcZUThEfmdpAYMgRERhykpLgtEAiIhZGL8fByt6DruoVG+5xvPFGQ2YUZSLebNGYkJBZlDTe7LSkmA0GjTZ3K6j8+QV7ar6NhXXhEhHvHzuX//4gOxPO6MoF8OyU2FA3yhSJY36/oTfG6vNjoaWDti6emBOiENWWpLfYPbuigbdB0AAoHBYOgB5yj4Svw+eR9pvSxUGg6YzICk25EZZo3cGQYhI90I9YBTFYjZhRlGukJTtmRP6xsGKznIQVbIjOj35xsvG4/RTssMqXbKYTZg5IRdbdlULXScRXINO39UwCEIUDLPJ/XvParMr0k9n3qyRaGixKh4AAdDve8/hcGB3RQPWbzmEL0pr3YK8RqMBMyfkYm5xPooKsvoFi9dvVmfUr1zkyNYYqOemog6HpjMgKTa4XuSJBgyCEJEuRXLAKNK8YjF16/OK+8bBisxyiPs+u0QE0eP5Zp82BFlp4V9VmFucr8kgiGvQqfG4dhu4EmlJuseV/yN18gcQczMHYEJBJrbtqZX9ubxxLVUsr2rB0699hcpa7393b68DW3ZVY8uuagzPScEdLmWDIvtIqU16TfZXtsj2HLoMhhgMmh4NT7GhsrYVY4anq70awnA6DBHpTnlVC259cgMefLYEJbtq+gUMpAPGB58twa1PbkB5VYts61JUkIWcCFMEpYNx4GSWgwgzinKFZcSIHMOYOdAcUQAE6Hvdgx2TrBQD4PEayRd8I4omnqMX65rkL1no6u67qilXqV8gUtbYzrJ63L9qs88AiKfK2jbcv2ozdpbVA0BU9YqQXpN6Gbb/ke/LE5N02BjVM1OKSA1tHXa1V0EoBkGISFciPWDUIodHMvbc4nwhy503a6SQ5UhEjWE8Z8pQ7K9sRmVtK6y28HaqBoMBdyycoqkUYc/zkKw0jjMkCoYaadaNx23YXd4gyySSYJVXteDxl7aF3O/B1tWDx1/ahvKqFrS0Rc/EBimTzhQv/vTku5q+JtU2Hab0S03TidSUkqT8AAI5MQhCUaWhxYqtpTX4ZNt32Fpag4YWHTbAIp9EHDCKtruiIeJGa7WNVpRWnKx/F5HlMCInxZldIsplZ44ScnD61oYK/OKZz7D0Dxuw8OEP8MTL27Gr/BgcIV7OLMxLwwOLp2kqEOLanFBrmSpEWuXZwDnS7LpgvfrRt8JL/YLmcODp174Ku+GlrasHf3rtK9Q2iW2mrSYpk06O6TDS66zHoFFSYhwbo5Lqhuf4buasR/rLCSPy0Nvbi3c2HcTbGyvQ5KU7euZAMy4/uwCXnTkKRiPjfnrlEHTAuOKuOUJ7hLy/5bCQ5awvOYSiwiwAJ7Mc7l+1Oay/15wQh2ULpwjvhWI0GrHg/DF45cNvhS3TX617MCaPHYzlS2f7radXUnOrDcOy+w7g8wYzCEIUDjmmg3iz51ATLGYT4owG9Cg8bWrP4caIv7O+q23D3kPNgtZIfVabHRazCSOHiA9MDU7v66mhVvlTJDo6ezQV7KfYlJEaXSNyeUZIurbhyyO46v71eOGdPV4DIEDfldkX3tmDq+5fjw1fHlF4DUmU3RUNQg4YXTMuIiWyId3nu2vcSkPCzXIwJ8ThgcXTQgokBMvhcGDT10eFL1cSbulSYV4aVt41B4/fXIziiUO8TdtUjM1+MmhlMZtQqNZVZiIds9rEjPYORvmRFsUDIADw+Tdi9h0HjkRPEORgdV/JihzTYSYWDgIAdNr1l1HR0dkNiw57mVB0ibbpMAyCkG7989P9eOrVr2Dv7g3q/vbuXjz16lf456f7ZV4zkoPIjAtRGlo6hExxAfoyIho9AnlSlkOwZRUjclKwfOlsTB47WMg6eRIRiAok3NIlg8GAosIsXHXeaAwdlCzPygXBs4HdeVOHqbQmRPpV23hCsef6fLd8gV1/9n0nJnhRWRs95TDHmvtKSyuqjgtfduGwNABAqoo9YMKVlBgvS2CIKBSeZYt6x7Ai6dKGL49gzfv7wnrsmvf3ISstCXNO58mJXsiRcSFiaoroGl1vOxgpy6G0ohHrtxzC56Xu03DijAbMKMrFvFkjMaEgU9ZxwKICUYGEW7q0s6w+rJ4xInmO+uzXLZWIAqpvVq4J5OFq9cvoqI90UeuEjFMohumwV1NSYhwOVYsPDBGFQmpcHC2i66+hmNDb24sVb34d0TJWvPk1zp48lD1CdEKOjAsRQRDRNbq+djBSlkNRYRasNjsaj9vQ0dmNpMR4ZA40CxuD64/IQFQwpNIlqU9KIOE2zRXJaPAckQt8Xlqr0toQ6ZeSJW1qlMKQd1Jz7AEyTKGQ9vtSzyY9aWrVXzNXij6exzd6xzNA0p13Nh0MugTGF3t3L97dJK4sguSlRMZFOLLSkmA0ijlajzMagtrBSAdxY4anY1h2iiIBEEBsICpYwZYuRdo0V5QZE3LdtofVZkdpRYOKa0SkT1kDkxR7ruxM5Z6L/JMy/walid8mzd+Xk1jMJozLTxe+fDlV1rYiO0OZiUlEsYJBENKddRsrhCzn7Y3lQpZD8lMq4yJUFrMJMyfkClnWjKJcxQIa4VAjwODZLNYXJXqVBGPcSPeRxA0tHeBFZqLAPL+TlRxbO2pommLPRf4lJ/X16+gNcVx6MFybVk8XtN9WSmVdW9RdhSf9qaqPnv5DAIMgpDMNLdZ+zSPD1XjchoYWq5BlkbzUyLgI1tzifCHLmTdrpJDlyEWN8XzemsV6o1SvkkD2HnafPKR2ZgqRfrif9GalWWCKU6YmJiEhHvEKPZer7HQx+6GstOg5OU409Z2WtMswxta1afW2vfoqU2xpsyk6MYnIm7qm6DpnYhCEdEV0x3BpHBtpm5YzLiaMyoQpPrKvUlO8EeNHZQR1X6vNjsraVuyvbEZlbWtQmRIiiAxEhSJQ6ZLSvUr8+aK01m17qBE4ItKjwzXu+2KrzY5uhdKourq60d2jfMpWTqaYKVaZns2Ydazm+6lAnfbISp69kZpWW2127DnYJHz5crJ39zKoTiQYG6OSrrQJvjrQ2s5mU3px8awR2LKrOuLlzJ2ZH/nKuCg92CikR82eg00+m4A6HA7srmjA+i2H8EVprVtvDqPRgJkTcjG3OB9FBVmyTYeRAlEitkEoApUuqdGrxBfPprtS4Egr60ekVTUN7iNxG1o6IENFhFfKh3b7HBOUidp2QnzWhFqO1PWVNabIMMY2KbEvKF1Vr37pZKiSEk0MqpPqoq0vDYMgpCuid4ypyYlCl0dyUutQ1T9RpRjrSw55DYKUV7Xg6de+8tnzorfXgS27qrFlVzWG56TgjoVTUJiXJmSdPM0tzlc0CBJM6ZLWro65Zq6oFTgi0jslP9dqhSirG8QEQaoboydFXRqNO1yGMbYdnX3vqVodvl4ZqYmwmHnKRuoxAMgbLCZ7TStYDkO6IrpZ2qghqUKXR/L5oOSwkOW8/7mY5QBiSzG8NQHdWVaP+1dtDrrpZ2VtG+5ftRk7y+qFrJOnooIs5GQqdyUgmNIlrV0d88xcEdUzhiiaDbC4f86V/Fx3yVB6QeGJ/77kUo4xttJ0GD0aYElgTxBS1YghqZpu3h8OBkFIV7LSLMKaWmYONCMrLbpSu6KV3MGGcIksxfBsAlpe1YLHX9oW8hVRW1cPHn9pG8qrWoSsl5qCaRarVq8SX6SUa4nSgSMiPUqMdw8eZskwItWXhpYTge9Eioj7vnlp4/EO4cuWpsMMHCC+1EZuBocDLW0s3yb1WBK1dcFJBAZBSHcuP7tAyHKuOLtQyHJIfnIGGyIhOmVbKqVwOBx4+rWvwl6+rasHf3rtKzgEF9XvrmhQLJV4RE4KJhRkBryfxWzCjAk5CqxRcKSUayIKXqfd/Sq3Ug2fAQjbH1DkDN/vs7bLMb3l+2Un6bCspL3DziAIqWrvoWZFv5eVwCAI6c6ls8WMEr1kdr6Q5ZD85Ao2REp0yrZUSrG7oiHoEhhfvqttQ2lFY+A7hmD9lkNCl+eLOSEOyxZOCbrJ66n5wU3WUYLne0vJwBGRXnV5NJcWPQnOH4dG+03FovjvJ61V1raLX/j3+xObDgPVrSe60GXX33pTdIm2gDGDIKQ7ew6JGW2291CzkOWQ/OQKNkRKZCmGaxNQkc1WRbHa7Phit/yjaM0JcXhg8bSQmrvuE/SdIILne2v9ZmUCR0R6luAxZlz0JDh/hmSxXE0r0lP6mtV394jv02L+vtSmrkl/5U/27l4kaKz/FcUePffV8YZBENIdLZ4gkrzkCjZESpr+IYLUBFTT/U9kHqMwIicFy5fOxuSxg4N+jNVmxxeCXi8RXHuCiNyWRNEs1aNPg+hSPn9ys6Jr4oGeFQ5LB9A3DUW8vveUHq9mm+KNGJisv14mFF1sUZaNpL/COIppcpwgRlu342gkctRoMBNHQiFqbKzUBFSO/ici/l656pHjjAbMKMrFvFkjMaEgM+gSGMmmr4/KHpwJRVNrp7PhckNLBxQ8lyPSLc9mlZ0KHmw3s9eCZuTn9k3sG54jfnLf8RN92UX2bv1NA0odkABzAk/ZSF1SNlW04CeKdEWrJ4gkP9HBBlGKCrIwPCcloh4erk1Atdr/pLlN7NWz6y8+FTOLcpE50Bz2Z7C8qgX/9/ZuoesVqbomK8YM77uayUZ2RMExJ7p/B9Q3KddHp+aY/sojoldfEHxwuvjpQK3fB0FM8fpLgs/JHIBOwccGRKFKTxWTRa0V+vsmoJim1RNEkp8UbIhEsBNHQmEwGHDHwilh9y3xbAKq1f4nXXaxV88yUs0Ylp0SdgBEmqDj2VBRS1ra9Zd2TaQFrSeUm0Jg43GAZkjHZGZB+y1Xza19Y3cTdHg1e3hOKvcnpCqjwFJyrWAQhHRFqyeIJD/RwQaRCvPS8MDiaSGvm7cmoFrtf5Io+LMX6fJETNCRQ3bGySaLnV3aDdAQaZlFwX1zj4OfU604eUwmfj+tZGBNtKTEOO5PSFUzJ4gtJdcCBkFIV7LSkiDqHNZoQNRFNaOdyGCDaJPHDsbypbODzlbx1QRUjmarIuRkip2g4BosCIeoBskiGQDkDT7ZZFF04IgoWnlmY6Qq2ASyqZVla1ohNZYWfcELOJllosdMkBqOWSeVzZ2Vr/YqCMcgCOmKxWzCuJFiyhnGjcqMuqhmLBAVbJBDYV4aVvziHNx42XifAbbMgWbceNl4/PkX5/gMyswtzheyPiL7n+QNjqwUydOBI83YWlqDhpbQD+60OnVlfIH7d0qkgR6iWOE5dSDFolwQ5ISgCVoUuY7OvvdBVpr4niBScskJq/62d2t7JzrtLNsiEom1AKQ74pMkSW8K89Kw8q45KK1oxPoth/B5aY1bw9xIJ46Eq7yqBU+/9pXfMo3G4za88M4efLytEncsnOI1ECK62aoIFrMJE0ZlovRgo5Dl/XXtyYammQPNuPzsAlx25igYjYFj8yIbJIu08IKxbv9mphlRkDzGKKUMUC4IYuRRhWbI2aet4/tg16GaVtmeQy6pyYmoPswGvqSe9z8/jImjB6m9GkIxE4R0xWqzY+/hJiHL2nuoCVZeAdI1h/SfxwF0r8MBOPp+r5SdZfW4f9XmoAMXlbVtuH/VZuwsq+/3O632P7nmwrGB7xQGKTB05X3rseHLIwHvL7pBsgg5mRYUFWa5/cxq45U7oqB4fFeJLr/zJ2UAM0K15kid+H5PLW1902H02GA0N9PCRv6kqpJd1VF3zsQgCOmKHCNySX/Kq1pw65Mb8OCzJSjZVeN5EREOB7BlVzUefLYEtz65AeVVLbKvz+MvbQv55NzW1YPHX9rmdf2k/icJIY7zS4g3ytb/ZGJhlqwnJ909vXjq1a/wz0/3+72fHPXikfrRRaf0CzpxRC5RkDy+xJVsWp6ezIwtrZB6w9TJMCK5p7evsWicLhN/DBioYHYUkSeHA1F3zsQgCOkKR+SSyIwLEaRRreG+N21dPfjTa1/1y2ZxCvWATcYDPIPBgHsXTQ05MBOqNe/v85sRInKCjigvvLOn3zZkEIQoOJ0ePUGqjymX+h8fr63vklh2/ESXbMseOCARAJCeqr+gV0dnN4YOGqD2alCMi7ZzJgZBSFc4Ije2yZFxESkRo1q/q21DaYV7rw3pb+2yhzYWr8veK9vfCvRlqDx0w3QkmOTdfTzz+k709nr/20VO0BHleHsnvjngHmhrPN6h0toQ6Uunx3d6m1W+k+F+z92pvfK6WCdHxmGKpa/sKSdDf8GEpMR4WQNERLGIQRCN6e3txVtvvYXrr78e06ZNw4QJEzBnzhz84he/wPbt29VePdWJvAIcZzSwcaGOyJ5xEab1Ww4JX45W/1bJ5LGD8btbz8TwbLETY1z19Drw788qfP7+4lkjZHvucK365y63fzczE4QoKIkJ7hckEuKVK3lrZ+8ezZAmaomeRgYAnd9fUBisYL8ZcRz4VlA/PKJw2TrZE4Rk0tbWhh//+Md44IEHsG3bNhw/fhx2ux3V1dV47733cP311+OJJ55QezVVZTGbcGp+hpBlnZqfwRG5OiJXxkUkrDY7vtgtZlTr57tPNp3S4t/qqTAvDc/ceRamj8/27GkozOsf++4NIlN8JyK1TVa3xmEmmcuGiKLFQI/mpANTlOt/0HCcUze0Im9wMoC+Y71EwdmG1u9P4PQ4uvxwTRsaWqKrHwPpz/ETDIKQDBwOB5YtW4Zt27YBAGbPno1Vq1bhjTfewK9+9SsMHToUDocDq1evxv/93/+pvLbqOtEh5kPYHmVdjqPd+1sOC1nO+hIxmRvA9416BZ2M97o0ndLi3+rp9Y/LcMW967F1T51sAQmrrRsNLd4b5L3hJ0CiptKDDc7bI3JSVVwTIv3wzHrzLI+RU3sHM0G0wjWI7KscMmzf76yr6tvFLlcBNQ3tHORMquvsiq7vSgZBNOLdd9/F5s2bAQDz58/HCy+8gPPPPx+TJk3CwoULsXbtWhQWFgIAVq5cidraWjVXVzVWmx2HBc14P1zdGnXjnqKV1WbH56WiMi5qhG130Y0vm1ttmv1bXT3z+ld45cNvhS/Xm6/3H+v3M6vNjtKD8mW5RGL73jrn7XGjxGStEUW76gb3bIz6ZgX76YiKZFPE1m44AKDvO94uOA4W/31myY69+jt+PtZiRXcPe9eQ2qIrFMcgiEasXr0aAJCcnIx777233+/T0tLw61//GgDQ2dmJNWvWKLp+WlFVL3Z2vB6vCMQirY5GFt0p22bv0ezfKnn94zJ8st335BbRDlUf7/cz0d8DIh1zGe3Icjui4HR5nPEqeajt2Y+E1LPj277m0gcqm4UvOyWpbzpMU6v+ejXVHmtnxhKpznOKl94xCKIBR44cwd69ewEAc+bMQVpamtf7nXHGGRg5ciQA4MMPP1Rq9TSltlHs7Hg5ZtGTeFodjSx6upDZFKfZvxUAenp6FMsA8Uf094BI5qSTgY+GFk6HIQpGblay27+z0pIUe+6UAcr1HyH/bN/vryqO9g9+R6pg2EAA+pwK2GrtRncPM5ZIXfZuBkFIsC+//NJ5e8aMGX7vO23aNADA0aNHUVlZKet6EWmFVkcjp6UkClmOJD3VrNm/FQCeW1cqbFnBGjkkTfHnjERRQabztuiAFlG0OjU/3e3fQwYpN8bUzpNLzZCCX/Zuwf1AAJx+SjYAYNKYLOHLltuAJBMGJDGzkNSVHGXvQQZBNKC8vNx5Oz8/3+99hw0b5rx94MABuVZJswYKvmIjenkkD9FXBUWNRraYxV5RSkqM0+zfCgCfblM+8Dp2RFq/n2m5u//EgpMH2KIDWkTRKivN/TOt5PSnrihr9qdnc2fmAwBys8R/xw/L7mtUff407Y1XD+S00VkYnTdQ7dWgGDc8ypq96y8nLAq5NjkdMmSI3/vm5uZ6fVwwqqurUV1dHdrKfa+srCysx4nWekJsLefxdv3VhsaixuNiywoaj3cI6ddQUdUS+cq4OHj0OHKzxF4BFfW3HqlrRZcMV+cCaW7txLBs958db9fuqMCyw83Og20bT66IgrJp5xGcOfnkRZ7vBDVAD4ZcI74pdOdPzwcgTwD5SF0rhmWnoqlVu/sPX86bOhyf7axSezUoxiUlRteFHQZBNOD48ZO1jwMG+D8BslhORsfb2kJrDvjWW29h5cqVoa2cxhw4IrZOtOLocZw5OU/oMkm8bw40BL5TCHZVNDpPVCOx52CTgLU5ae+hJuFTEUT9raK3QbAOVh/HxNGD3H62bU+dj3urb9u+Opw/ve9K4/7KFnVXhkgnPt3uHgQRNQUuGAmmOACcFKe2gQNOBuvLvmsRvnxpX7i1VF/TYeKMBmSlWdBlV/4iBJGrmkarkONJrWA5jAZ0dXU5b5vN/lPXXX/v+rhYIXoaB0fk6kNLm9grN82CMkvkeD9q9W8VvV7B8pwaAUDTV/LaXLLV1HrNiPSm0eMzLUdPCF+irc5dr/72wLnO23J8x0v7Qi3vP7y5/v+NAQAYmLJEKmuNsux5BkE0IC7uZHpRoC85h0uhrNEYe5tPdJ3okEHJge9EqktLEdfXAgDSB4rpuyHH+1Grf6vo9QqW59QIAMhIVWddguG6vmq9ZkR6k+nxmR6sYN+fIYNSFHsu8i4nM8ntIp8c3/HSvlDL+w9vrpjTFwSRo08KUShSk8UOA1Aby2E0wLXExWazISHBd7POzs6TUTh/9/PmyiuvxMyZM0NfQfT1BHn00UfDeqxIU8flYPV7+4Qt7/RTBgtbFsnntNFiu7lPdJngEQk9vB9F/a2it0GwPKdGAMBZk4fio63anI51zpShzttqvWZEenPe1GFu/1byszPn9KHY/E14/dK0wmg0oLdXv1Nunrlzjtu/p0/IwZufim3+L+0L5Vi2XO780RTnBc9xI8Xsy4nCNWpI9JTCAAyCaIJrH5COjg6kpvp+k1mtVuftgQND6xQ9ZMiQgI1XtW5Ydiri4wxC5qXHxxmjqrYtmg3LTkVCvFFIY84Ek7jtLtf7Uat/q6j1ClbqgIR+UyMAYOJo7QYvXddNjdeMSI9c+4EAyn12TPEGTBs/RPHPqdEAzJiQi5LdNREva9bEXBhgwJZd+gzkFJ82pF/z7jHDM2AwiJsS5LovFL1suSyaeyrmnH7yc5GVZkHqgAS0noi9UnhSX+ZAs9fjMT2LvXoKDRo69OSVw5oa/ztE199nZ2f7uWf0ukDQeLMLpw0XshxSxnmCttf5U8Vudznej1r9W0WtV7CuPne0z9+d4iVDRG2njui/Tkq/ZkR6Mzjde3mCEp8d6ftb6c/p1HHZmDd7pJBlXVI8CnOL84UsSw3zZnl/HaaOE3eM67kvFLlsV6L2S6cVZuHq88b0+/lVfvaJRHK64uxCtVdBOAZBNGD06JNfapWV/lO8jxw54rxdWBh9b8hg/OyKCUKWc5Og5ZAyfna5oO0uaDkSOd6Pmv1bBS/Pn/g4Ay47a5TP3z++JLzSPjn99ub+66Tka0akR3+5+xyvP1fisyN9Ryr9Ob1v0RkoKsjC8JzI+pGMyEnBhIJMIcsKx5CsyHpOSevvzf2Lzoho2a4894Uily0xxRuF7Zd+fdMMrz//wVmjEB/HBqmkLFO8EZeeKSZoqyUMgmjApEmTnA1Rd+zY4fe+27ZtAwDk5uYiLy82R7vGxcXh2v93SkTLuPb/neLWkJa0T6vbXY71iua/NVi3/3Cy3+bPJpMJs4pyFVmXYMwqyoXJ1H/KhJKvGZHeFOalITHRe7M9uT87rt+RSn5OL56Zj/j4eBgMBtyxcArMCeF9T5sT4rBs4RQYDIaIlxWOi2fm4+7rpwlZf2/i4+Nx8cz8CNawj7d9oahlu7ptwSSYTCZZ991GoxG3/3ByRMsnCtVtCyZF5TCO6PuLdCg3NxeTJk0CAHz00Udob2/3er8dO3bg0KFDAICLLrpIqdXTpGsuGIvzPRqpBev8qcNwzQVjBa8RKUGr212O9YrGvzVYnrXQvty/eBoKhobWG0kOBUMH4v7F03z+XonXjEhJIj53GSmJePqOs/3eR67PjrfvSCU+p5PHDMItV53m/HdhXhoeWBx6IMGcEIcHFk9DYV5axMsKh/R3iFx/b2656jRMHjMo7PX0ty+MdNmuXPdZcu+755w+DIvmnhrW8knfcjPD68mxaO6pYb9ngj0e0yMGQTTi+uuvBwC0tLTgkUceQW+ve4Ou48eP45FHHgHQdwX0uuuuU3wdtebn10wJOeJ+7f87BT+/ZopMa0RK0Op2l2O9oulvDYYp3og7fzTFay20L3+68xxVM0JmFeXiT3eeE/B+cr1mREq79v+dgj/deQ7u/NEUmOLCO4wszEvDy7/6f0HdV/Rnx993pJyf04tn5uPRn83q9/PJYwdj+dLZQZezjMhJwfKlszF5bP8G0aEuK3Ng6ONiPf8OkevvzaM/mxVW1kYw+8Jwly3xtc+Se9999XljIvr8kf5cPDMf//fABX3bPT647e76/nS+Z8J4bLQyOBxa748cO2688UZs3rwZAHDGGWdg0aJFyM7ORllZGZ577jkcPXoUAHDnnXfiZz/7maLrtmPHDlx77bXOf7/yyis44wzxNZXh6Onpwf+tK8Un2yq9dndPMBlx/tThuOnyCSyBiSJa3e5yrJfe/9afXjYO75dU4u2N5Wg8but3v8yBZlxxdiEuPXNk2CmXdrsdD/71c+w73BzW442GvmZ59y06Aw6HI+CyTs1Px2+XzPRaAuNPT08Pnnt7Fz76ohJan2hZMGQAMgYOwI5v671OUjAagKw0MxqabVB7/k3eIAuyM5Lw1f7GiKY+uH6WHA4HnlizA9v21oW0zNPHZuKhG2YE9T4KxBRngF3A9ClXo/NS0dTagcZWe9CP8fUd09vbi3c3HfL52fY0ON2Mv9x9js8SGH8Cfd+Es/7hPpe0vBsuOQV/eGWnz/eI6/dKfLz/gYwOhwOlFY1Yv+UQPi+tcRt5G2c0YEZRLubNGokJBZk+S0jCWZbD4cDbGw7glY/KfL7XDOj7O+7/se+/Q+T6e9Pd3Y3lL2/Htr31fu934bQ83HLVpJD2hd3d3SF91oPdZ8m97w70+bOY4wAYYLV1e/0bCvMGYn9lM5rbQps4o/eRzHrh6/sj0Hb39/6M5LFqkuM8lEEQDWlvb8eSJUuwfft2n/dZvHgx7rvvvrB2IJHQchDE1ZG6VuyqaETz8Q6kD0zCxIJMjsGNAVrd7nKsl97/1oYWKw5Wt6K1vROpyYkYNSRV+Ni1XQfqsfmbajS0dMABB4wGwOEwICstCbNPGwJzYjy27a1DY0sHMtOSMG1cNsYMzwi4LOnxokb0HqlrxcadVdh/5Dhsti4kJcQjO3MARgwZ6Pb67a9swgclh1Fe1QIYgNwMC3KyBqD5uA31zR0wGg0wJ8bB2mFHc3sXDADGDE/HpWeOcv5d3v4Oc2I83vjPtyitOIbO7r4rP6PzBuKaC0/p9zfur2zy+5q5bv8EkxEDkhKQaIpDanIijta14ovSWjS3dSIxMQ5ZA81ISzaju6cXza02NLV3IcFowKmjMjAuPwO7KxpRUd2KeAMwKD0JFrMJbdYuGGCAw9GLptZO2Ht6kJORjHNOH4pp44cEta6ePx+RnYzWju6gPkuej81JT8Lew004UNUCOPoyGy6elR/U+8icEI+BKQkYYDa5Pa+/z4bn848ZNhAwGHG0vg0nbN0YYO47QG5oscJq60FmWhLSkxPwXW2b3/fupp1H8On2I2hstSEz1Yzzpg5D/pCBYX3HuK5/ZV0ryo80o83a7Vyu5xjcSHh+36QmxeO7unY0tnTAFG+EOTEOCfFxQr4jg/1uC/QZCYXVZkfjcRs6OruRlBiPzIHmfmNk5VhWQ4sVm74+itKKBnTaezEiJxlnTxkW8t8hcv292V/ZhE+2VTq/J8bmp+OCaSOE7At9fdYi3WfJve/29/0RaL/r7fcAcLC6FYeOtqDxuA3xcUYMzU5xW+8jda14d1MFSisa0WXvRUZqIvKHpCJ1QCI6Ou1oau1EfZMVHbZuJJnjUZCX5vwekp7zaH0bjrV0oOP7QI3FHIesNAuGDk5xrqd0X891GTQwETv21Tmff+igAZg3eyRys5L7vdYA8L+vqlBxpAXWrm4kJcRjcHoSUpMTYTAAcAD4fnSy85/f3zCZ4tDaZsPB6lbYunowKD0RBUPTkTkwqd/rJb2GrW02fFV2DLVNJ2CKMyI3awB6entR23gC3T1A3uBkXDBtuPM7Odzvj0iOqZQ4HhOFQZAY0Nvbi3Xr1uGdd97Bt99+i7a2NqSnp2Py5Mm49tprMWOG947RctNLEISIiIiIiIiigxznof5z80hxRqMR8+fPx/z589VeFSIiIiIiIqKoop1iHyIiIiIiIiIiGTEIQkREREREREQxgUEQIiIiIiIiIooJDIIQERERERERUUxgEISIiIiIiIiIYgKDIEREREREREQUExgEISIiIiIiIqKYwCAIEREREREREcUEBkGIiIiIiIiIKCYwCEJEREREREREMYFBECIiIiIiIiKKCQyCEBEREREREVFMiFd7BUgfrFar27/LyspUWhMiIiIiIiKKBZ7nnZ7npeFgEISCcuTIEbd/P/rooyqtCREREREREcUiz/PScLAchoiIiIiIiIhiAoMgRERERERERBQTWA5DQTn33HPd/j18+HAkJSWptDbkqqyszK086Ze//CXGjh2r4hqRP9xe+sLtpR/cVvrC7aUv3F76wW2lL9xegXV0dKCystL5b8/z0nAwCEJByc3NxbXXXqv2alAQxo4dizPOOEPt1aAgcXvpC7eXfnBb6Qu3l75we+kHt5W+cHspg+UwRERERERERBQTGAQhIiIiIiIiopjAIAgRERERERERxQQGQYiIiIiIiIgoJjAIQkREREREREQxgUEQIiIiIiIiIooJDIIQERERERERUUxgEISIiIiIiIiIYgKDIEREREREREQUExgEISIiIiIiIqKYwCAIEREREREREcUEBkGIiIiIiIiIKCYwCEJEREREREREMSFe7RUgosgMGTIEt956q9u/Sbu4vfSF20s/uK30hdtLX7i99IPbSl+4vdRhcDgcDrVXgoiIiIiIiIhIbiyHISIiIiIiIqKYwCAIEREREREREcUEBkGIiIiIiIiIKCYwCEJEREREREREMYFBECIiIiIiIiKKCQyCEBEREREREVFMYBCEiIiIiIiIiGICgyBEREREREREFBPi1V4BIgreww8/jDfffBNLlizBHXfc4fe+vb29ePvtt7Fu3TqUlZXBarVi0KBBmDJlCq655hpMnTpVobWODQ0NDXjttdewefNmHDp0CFarFcnJyRg9ejTOO+88LFiwABaLxefjub2UU1dXh7///e/YuHEjqqqqAADZ2dmYPXs2rr76aowdO9bv47mt1Nfa2op58+ahvr4el156KZ588kmf9+X2UsbGjRtx0003BXXf2bNn44UXXuj3c24r5R04cACvv/46SkpKUFtbi97eXgwdOhRnnnkmFi9ejNzcXJ+P5faS34oVK7By5cqQH3fFFVfgiSeecPsZt5dyOjo68MYbb+Djjz/GgQMHYLVakZqainHjxuEHP/gB5s6di7i4OJ+P57aSn8HhcDjUXgkiCuzjjz/GrbfeCgABgyBtbW245ZZbsG3bNq+/NxgMWLx4Me677z5Z1jXWfPLJJ7jvvvvQ1tbm8z5Dhw7FqlWrcOqpp/b7HbeXcj755BPce++9aG9v9/r7+Ph4LFmyBLfddpvX33NbacPdd9+Nd955BwD8BkG4vZTz3HPP4amnngrqvt6CINxWyvvLX/6CVatWobu72+vvk5OT8dRTT+Hss8/u9ztuL2WEGwRZsGABHnvsMee/ub2Uc/jwYSxZsgSHDh3yeZ9p06Zh5cqVGDhwYL/fcVspg5kgRDqwcePGgJkfEofDgWXLljm/PGfPno2FCxciKysL+/btw/PPP4+jR49i9erVyMjICPrKHXm3bds2LFu2DHa7HSaTCQsWLMA555yDtLQ01NTU4O2338aGDRtw9OhR3HDDDVi7dq3blTVuL+Xs3LnTua3i4uKwYMECnHXWWUhOTsbevXvx/PPPo6GhAStXrsSAAQNwww03uD2e20obPvnkE2cAxB9uL2Xt3bsXAJCVlYW//e1vfu+bnJzs9m9uK+WtXLkSK1asAACkp6fjhhtuwOTJk9Hd3Y0PP/wQb775Jtrb23H77bdj7dq1KCgocD6W20s511xzDc4///yA96uqqsIdd9wBu92OQYMGYenSpc7fcXspx2q14qc//SmOHDkCAJg6dSquueYa5Obm4vDhw3jxxRdRXl6Obdu24dZbb8WaNWtgMBicj+e2UpCDiDRt9erVjvHjxzvGjBnj/P+pp57yef9///vfzvvdd999/X7f3NzsmDt3rmPMmDGOoqIiR01NjZyrH9V6e3udr+X48eMdX3zxhdf7rVy50rlN7rzzTrffcXsp5/LLL3e+1h9//HG/3zc0NDiKi4sdY8aMcUyaNMnR0tLi9ntuK/U1NjY6Zs2a5fZ9+Itf/MLrfbm9lHXBBRc4xowZ4/jpT38a8mO5rZS1d+9ex7hx4xxjxoxxzJkzx1FZWdnvPq+//rpzm9x2221uv+P20pbOzk7n/u2UU07pdyzC7aWc5557zvla33XXXY7e3l6333d2djoWL17svM8HH3zg9ntuK+WwMSqRRknpdMuXL3deuQ7G6tWrAfRdabv33nv7/T4tLQ2//vWvAQCdnZ1Ys2aNuJWOMV9//TXKy8sB9F2tmT59utf73XLLLRgzZgwA4D//+Q+sVqvzd9xeyigtLXVeqb7ooou8XlnLzMzEjTfeCKDvas7//vc/t99zW6nv17/+NRoaGpCRkRHwvtxeymlvb0dlZSUAYNy4cSE/nttKWX/+85/R3d0Ng8GAP/3pTxg2bFi/+/zwhz907rf++9//wmazOX/H7aUtK1eudO7fbrjhhn7HItxeytm4caPz9n333eeW5QEACQkJuOeee5z//vTTT91+z22lHAZBiDTolVdewSWXXIINGzYAAAoLC51fev4cOXLEuSOcM2cO0tLSvN7vjDPOwMiRIwEAH374oZiVjkHbt2933j7vvPN83s9gMKC4uBgA0NXVhYMHDwLg9lJSV1cXzj//fAwfPhwXXHCBz/uNGjXKebumpsZ5m9tKfe+//z4+/PBDGI1GPPTQQ37vy+2lrG+//RaO71vMeet75A+3lbKam5uxadMmAH0B4YkTJ/q874033ogFCxbghhtucAbvub205dtvv3X21xk+fHi/flbcXspqaGgAAKSmpiIzM9PrfaTXGQCOHTvmvM1tpSwGQYg0aPfu3bDb7UhISMDPfvYzrF27FsOHDw/4uC+//NJ5e8aMGX7vO23aNADA0aNHnVfwKDQTJ07EkiVLcMUVV7jt1LxxuPSg7uzsBMDtpaQpU6Zg1apV+Pjjj3HppZf6vN/Ro0edtwcPHuy8zW2lroaGBjz66KMAgMWLF+O0007ze39uL2VJB+4AMH78+JAey22lrJKSEtjtdgDAJZdc4ve+l19+OR577DHceeedzuwrbi9teeyxx5yNbR966CGYzWa333N7KUs6bmhtbXULcLiSLoQBQE5OjvM2t5WyGAQh0qDExERcffXV+PDDD3HnnXciMTExqMdJpRkAkJ+f7/e+rumvBw4cCGs9Y92MGTNwxx134IknnnDbkXmzdetW5+2hQ4cC4PbSmqamJrz44osAAIvFgjlz5jh/x22lrkceeQTNzc0YOXIkli1bFvD+3F7K2rdvHwAgJSUFPT09WL58OebNm4eJEydiypQpuOKKK7By5Uq0trb2eyy3lbK+/fZb523XLJDe3l7U1dXh4MGDOHHihM/Hc3tpxyeffIIdO3YAAIqLi71O8eH2UpZrVvAf//jHfr/v6elxm2Y2d+5c521uK2VxOgyRBj3yyCMwGkOPUdbW1jpvDxkyxO99XSeUuD6OxNu4caPzJGHMmDHOgAm3l/o6OztRVVWFTz/9FGvWrMGxY8dgMBjw8MMPIz093Xk/biv1rFu3Dp988gmMRiOWL18eVFCY20tZUiaI3W7HJZdc4sw0APo+Y3v37sXevXvxj3/8AytWrMDUqVOdv+e2UpZ0wmQymTB48GA0NDRgxYoV+OCDD3D8+HEAQFxcHKZOnYrbbrsNZ5xxhtvjub20Q5ruAwC333671/tweylr4cKF+PTTT7Ft2za8/fbbqKmpwYIFC5Cbm4sjR47g5Zdfxp49ewD09ZI766yznI/ltlIWgyBEGhROAASA8wAGAAYMGOD3vhaLxXm7ra0trOejwJqamvDII484/y013gS4vdS2e/duXHXVVW4/y8nJwa9+9Su3LBCA20otdXV1+O1vfwugrwxm8uTJQT2O20s5XV1dqKioAADYbDakpKRg8eLFmD59OlJTU3Ho0CG89dZb2LZtG5qbm3HjjTfi1VdfxYQJEwBwWymtpaUFQF/jxa+//hpLlixx/kzS09ODL774Alu3bsU999zjNi6c20sbSkpKnFk906ZNw6RJk7zej9tLWYmJiXj++efxwgsvYPXq1fjiiy/wxRdfuN1n0KBBuOeee3DZZZe5/ZzbSlkshyGKIl1dXc7bnnWhnlx/7/o4EufEiRO4+eabnQ02p02b5rbT4/ZSV3V1db+fHTt2DG+88QZKS0vdfs5tpY6HHnoIra2tyM/Px89//vOgH8ftpZwDBw44Mz/y8/Oxbt063HXXXTjzzDNx2mmn4fLLL8ff//533HTTTQD6MkPuuece9Pb2AuC2UppU6tLZ2YklS5bg+PHjuP7667F+/Xrs3r0bGzduxH333QeLxQKHw4Hf/e53eP/9952P5/bSBmmKCAD89Kc/9Xk/bi/llZeXY9++fW6TAF01NDTggw8+cAaPJdxWymIQhCiKuI7R9RzL5cm1UWe4mSfkW1tbG37605/i66+/BtCXYfDUU0+5vdbcXurKz8/Hc889h3/+859YtWoV5s6di56eHmzYsAHXXXedc4ICwG2lhn/+85/47LPPnGUwgQ4KXXF7KeeUU07Bxx9/jNWrV+OFF15AXl6e1/vdeeedzkyeiooK5whqbitldXR0AOgbA97S0oLHHnsMDz30EAoLC5GQkICcnBz85Cc/werVq2EymQAATzzxhLOhN7eX+ioqKpz7p7Fjx3rtBSLh9lLW//73P1x77bX4+OOPMXDgQPzqV7/Cpk2bsHv3bnz00UdYunQpTCYT/vvf/+JHP/qR2wUXbitl8VUjiiKu6XE2m83vfaUDGqBvbjmJU19fj+uvvx5fffUVACArKwsvvvgiBg0a5HY/bi91jR07Fueccw4mTpyI888/H08//TQef/xxAH0nCnfddRfa29sBcFsprbq6Gk888QQA4Mc//jGmTJkS0uO5vZQTFxeH4cOHY9asWT4DIEDfQf0Pf/hD579LSkoAcFspzTWYOHPmTFx99dVe7zdp0iRnuWBdXR23l4a89957zpPg+fPn+70vt5dy6uvrcccdd8BmsyE9PR1vvPEGFi5ciMGDByMhIQH5+fm4/fbb8be//Q0mkwktLS247bbbnK87t5WyGAQhiiKuNYTS1R5fXNP0Bg4cKNs6xZpvv/0WV199tbMRak5ODtasWYOCgoJ+9+X20p4rr7wSF110EYC+2vmPPvoIALeVkhwOBx588EG0t7cjPz8/qGkwnri9tOnUU0913pbGUXNbKSs5Odl5+8ILL/R733PPPdd5W8pq5PZS38cffwygL7B48cUX+70vt5dy1q1b53wNb7/9dgwfPtzr/aZPn45rr70WQF/A/9NPPwXAbaU0BkGIoog0ehWAsw+FL66/z87Olm2dYsnGjRuxcOFCZ6fuUaNG4dVXX/UaAAG4vbTK9cRACmZxWynnjTfecF51XrRoEQ4dOoR9+/a5/e9aS93a2ur8+bFjxwBwe2mVtzp2bitluWYkBhrt7jqhorm5GQC3l9oOHz7snPBzxhlnBHxdub2Us2vXLudt11G53lxwwQXO21KAkdtKWZwOQxRFRo8e7bxdWVnps1s4ABw5csR5u7CwUM7Viglvv/02HnroIXR3dwMApkyZgmeffRZpaWk+H8PtpZy2tjZUVlaiqqoKF154od96W9dtJjV85LZSjnRACACPPvpowPtv3LgRGzduBADceuutuO2227i9FLR3715UVVWhsbERl19+OZKSknzet7Gx0Xk7KysLAD9bShs7diz+85//AHCfRuGNa8PF1NRUANxeapOyBgAEzAIBuL2U5JqdkZKS4ve+mZmZztvSdBduK2UxE4QoikyaNMl5crdjxw6/9922bRuAvlnj/uq4KbC1a9fi/vvvdwZALr74Yrz88st+AyAAt5eSHn30UcyfPx+33367c6ygL5WVlc7b0pVSbit94fZSzvPPP4/bbrsNv/rVr9wCWN58+eWXztsTJ04EwG2lNNcTK9ft4Y2UcQDA+Xpze6lr+/btztvTp08PeH9uL+Wkp6c7b7seR3hTV1fnvC0FRLitlMUgCFEUyc3NdR7gfPTRR86mjp527NiBQ4cOAYCz/wGFZ/v27XjooYecTcquu+46PP3000E1quL2Us7UqVOdt//1r3/5vF9vb6/b72fPng2A20pJTzzxBMrKyvz+73o19NJLL3X+/LbbbgPA7aWkGTNmOG+vW7fO5/06Ojrw+uuvAwBMJpOz7IzbSlkzZ850lsR88MEHaGho8Hnft99+G0Bf81upPwi3l7qkQGNKSorPUltX3F7KmTZtmvP2v//9b7/3fffdd523peMTbitlMQhCFGWuv/56AH1NHR955BH09va6/f748eN45JFHAPQdiF533XWKr2O0aG9vx913342enh4AfU01H3744YCjzVxxeylj7ty5zqs0b7zxBj7//PN+93E4HHj88cexZ88eAEBxcTGKioqcv+e20hduL2XMnTvXmfX2zjvv4JNPPul3H7vdjnvvvdfZDPVHP/qRW28KbivlxMXF4cYbbwTQtw+76667cOLEiX73e/nll53fkxdccAEGDx7s/B23lzrq6uqcvVmKioqCPtbg9lLGvHnzkJGRAaDv87Nhwwav93v33Xfx1ltvAejrHVdcXOz8HbeVctgThCjKzJs3D2vXrsXmzZvx3nvvoba2FosWLUJ2djbKysrw3HPPOQ9Eb7vtNgwbNkzlNdavf/zjH87mVIMGDcKCBQucjTT9yc3NdZ40cHspIzk5Gb/+9a+xbNky2O123HDDDbj66qtx9tlnIysrC4cOHcLrr7+OnTt3Augrg5HG5Uq4rfSF20sZKSkpeOSRR3DnnXeit7cXt99+O66++mpceOGFSE5Oxv79+7FmzRrs378fQF8ZzB133OG2DG4rZf34xz/G//73P3zxxRf4/PPPccUVV+DHP/4xTj31VLS1teGdd97Be++9BwDIyMjAL3/5S7fHc3up4/Dhw87bviaPeMPtpYzk5GT89re/xdKlS9HT04Obb74Z8+bNw8UXX4zBgwejvr4eH3zwAdavXw+HwwGz2YwnnngC8fEnT8e5rZRjcEg53ESkaVu3bsWiRYsAAEuWLOl3EOmqvb0dS5Yscasd9bR48WLcd999IWUtkLtzzjknYAdvb5YvX4758+c7/83tpZz33nsPDz/8sFsDM08TJkzAM88847XOlttKG6qqqpzd9y+99FI8+eSTXu/H7aWcdevW4Ve/+pXf0Y6zZ8/G008/7Wyy6YrbSlk2mw333nsvPvzwQ5/3yc/Px6pVq7w2XuT2Ut66detw7733AgDuuOMOLFmyJOjHcnsp5+OPP8Z9993ns5wF6Ltw9vTTT7uV6kq4rZTBTBCiKJScnIw1a9Zg3bp1eOedd/Dtt9+ira0N6enpmDx5Mq699lq3Om4KXVNTU1gBEG+4vZRzySWXYOrUqXjllVfw2WefobKyEl1dXUhPT8fEiRMxb948/L//9/9gNHqvFuW20hduL+VcfvnlmD59Ol555RVs3rzZ+dnKysrCxIkT8YMf/MDv2EhuK2WZzWY888wzKCkpwVtvvYWvvvoKDQ0NSElJwYgRI3DJJZfg8ssvx4ABA7w+nttLea5lS4HGG3vi9lLOBRdcgNNPPx2vvfYaPvvsMxw6dAgnTpxASkoKRo8ejXPPPRcLFizgZ0tlzAQhIiIiIiIiopjAxqhEREREREREFBMYBCEiIiIiIiKimMAgCBERERERERHFBAZBiIiIiIiIiCgmMAhCRERERERERDGBQRAiIiIiIiIiigkMghARERERERFRTGAQhIiIiIiIiIhiAoMgRERERERERBQTGAQhIiIiIiIiopjAIAgRERERERERxQQGQYiIiIiIiIgoJjAIQkREREREREQxgUEQIiIiIiIiIooJDIIQERERERERUUxgEISIiIiIiIiIYgKDIERERKSq7u5utVdBdXwNiIiIlBGv9goQERFRbOrp6cHf//53HDlyBA8//LDaq6MKm82GZ599FklJSViyZImw5e7atQsLFy5EWloaPvroIyQnJzt/d/3112Pbtm1hL3v58uWYP38+AKC3txfz58/Hvn378Kc//QkXX3xxxOtOREQkJ2aCEBERkeLq6upw5ZVXYvny5Thx4oTaq6OKsrIyXHLJJfjrX/8Ku90ubLlWqxV33303uru7cccdd7gFQEQzGo144IEHAAC/+tWvUFdXJ9tzERERicBMECIiIlLc4cOHsW/fPrVXQ1V79uzBkSNHhC/3T3/6Ew4fPoyxY8c6MzZ8mTt3LiZMmBDS8ouKitz+PW3aNJx33nn49NNP8cgjj+Cvf/1ryOtMRESkFAZBiIiIiKLEt99+i1deeQUA8Itf/AJGo/+k3zPPPDNgoCQYd955JzZs2IANGzbgv//9L84999yIl0lERCQHlsMQERERRYnf//736O7uxvjx43H22Wcr9ryFhYW46KKLAAC/+93v0NPTo9hzExERhYJBECIiIqIosGPHDmzZsgUAcO211yr+/D/60Y8A9JU6vfPOO4o/PxERUTAYBCEiIiLFrF27FmPHjsWiRYucP3v77bcxduxYjB07Fvfdd5/s67B582bcfffduOCCCzBp0iRMnjwZF1xwAe69915s2rTJ72NXrFjhXNe1a9f6va/0t44dOxYrVqzot4z777/f+bOVK1d6vW8onn/+eQDAgAEDVJnSMm3aNOTn57utCxERkdYwCEJEREQxobq6Gtdffz1uvPFGvPPOO6isrERHRwesVisqKyuxbt06/PSnP8VPfvITNDU1qb26ITl69Cg+++wzAMC5554Li8WiynrMmzcPAFBRUYGtW7eqsg5ERET+sDEqERERKaaoqAj33HMPKisr8frrrwMAJkyYgLlz5wIARo8eLcvz1tXV4dprr0V1dTUAID4+HmeeeSbGjRsHg8GAPXv2YNOmTeju7kZJSQmuvvpqvPnmm8jMzBS+LsXFxbBYLCgtLcX777/v/FlxcTEAYPLkySEv89///jd6e3sBAGeddZa4lQ3R7NmzsWrVKgDAunXrMH36dNXWhYiIyBsGQYiIiEgxo0ePxujRo7F161ZnEGT06NG48cYbZX3eO++80xkAyc/Px6pVq1BYWOh2n7KyMixduhRHjhxBVVUV7rrrLqxevVr4ukyZMgVTpkzB2rVrnUGQyZMnR/QafPrpp87bs2bNingdw3XaaadhwIABOHHiBDZs2ICenh7ExcWptj5ERESeGAQhIiKiqLZp0ybs2LEDAJCamoqXXnoJubm5/e43duxYrF69Gpdffjna29tRUlKCkpISVYMKwWhvb8fevXsBAFlZWcjKygr6sZs2bUJzc3NQ9x09enTALJO4uDiMGTMGO3fuRHNzMw4cOIBTTjkl6PUhIiKSG4MgREREFNXee+895+1FixZ5DYBIhg0bhuuvvx7PPvssAOCtt97SfBBk9+7dzlKYMWPGhPTY999/35mNEsgVV1wRVKmNFAQBgG+++YZBECIi0hQ2RiUiIqKo9sUXXzhvX3jhhQHv7zpZZdu2bbKsk0iHDh1y3h41apSKa9J/HQ4fPqzeihAREXnBTBAiIiKKWt3d3aitrQUAmEymfn1AvBk9ejRMJhPsdjvq6+vR1dWFhIQEuVc1bDU1Nc7bAwcODOmxy5cvx/z584WuT1pamvO21IeFiIhIK5gJQkRERFGrpaXFeTs5OTmoJp1GoxEpKSlel6FFbW1tztuu662W5ORk5+329nYV14SIiKg/BkGIiIgoajkcDudtg8EQ9OOkHhtAX1Ak0ueWU1dXl/O2xWJR5Dn9GTBggPO267oRERFpAYMgREREFLVcy0Pa2trQ09MT8DF2uz2o7IpAQY7Ozs4g1zIyZrPZeVsLQQfXvzsxMVHFNSEiIuqPQRAiIiKKWgkJCc5pMHa7HeXl5QEfc+DAAWewZPDgwW4n8q7ZJIECDseOHQtnlUPmWn5y4sQJRZ7TH6vV6rztum5ERERawCAIERERKS6U0pRInX766c7bH330UcD7u95nypQpbr9LSkpy3m5qavK7nN27d/v9vajXYOjQoc7bUhNYNbk2as3Ly1NxTYiIiPpjEISIiIgU59pnI5gSlUhcccUVztt///vf3U7SPR09ehT/+Mc/nP++5JJL3H4/ePBg5+2SkhKfy9mzZ4/f3wPiXoORI0c6b1dVVYW9HFFc18F13YiIiLSAQRAiIiJSnGuZxNGjR2V9rtmzZzszOlpbW7F48WKvZTEHDhzAT37yE+dEk5kzZ+K8885zu8+MGTOcGRw7duzAG2+80W85u3fvxtKlSwMGNkS9BhMmTEB8fDwAYN++fWEvR5S9e/c6b0+aNEm9FSEiIvIiXu0VICIiotgzdOhQGAwGOBwOfPnll7j77rsxevRoDB48GJdffrnw53v66adx1VVX4dixYzh8+DB+8IMf4Mwzz8T48eNhMBhQWlqKTZs2obu7GwCQk5OD3//+9/0mwwwaNAiXXHIJ3n33XQDAL3/5S7z77rvOkptdu3bh888/h8PhwMUXX4wPPvjA5zq5loq8++67SElJQXZ2NkaPHo1zzz036L/NYrGgqKgIO3fuRENDA44ePepWIqOkrq4ufPvttwD6XquCggJV1oOIiMgXBkGIiIhIcSkpKZg3bx7ee+89AMA777wDABg7dqwsQZCcnBz861//wrJly7Bz5050d3djw4YN2LBhQ7/7nnXWWfjd736HjIwMr8v61a9+hbq6Omzbtg0AsH37dmzfvt3tPgsWLMDPf/5zv0GQMWPGYPLkydi5cyccDgdeeeUVAMC5554bUhAEAM477zzs3LkTALBlyxYsWLAgpMeL8uWXX8JmswEALrjgAlXWgYiIyB+WwxAREZEqli9fjptvvhkjRoxAYmIiBg4ciPj4+ICjZ8OVk5OD119/Hc8++ywuvfRS5OXlISkpCSaTCXl5ebjsssvwwgsv4Pnnn/cZAAH6yljWrFmDp556CmeffTYyMzNhMpmQm5uLiy++GC+99BIee+yxflkkngwGA55//nlcd911GDJkCEwmEzIyMsL6+y+77DLn83kL7Cjlf//7n/P2ZZddptp6EBER+WJwyHWkQURERESKueWWW/Dpp5/CZDKhpKQEqampij5/b28vzj77bNTX12PcuHF4++23FX1+IiKiYDAThIiIiCgK3HDDDQAAu93u7FmipE2bNqG+vh4A8JOf/ETx5yciIgoGgyBEREREUeCMM87ArFmzAAD/+Mc/ZCsr8uXvf/87AGDUqFGYN2+eos9NREQULAZBiIiIiKLEL37xCxgMBhw8eBCffvqpYs9bVlaGzZs3AwDuvPNOxMXFKfbcREREoeB0GCIiItKMmpoavP/++8KW98Mf/hDJycnClqd1EyZMwA9/+EO8/vrrWLFiBc477zwYDAbZn/fPf/4zHA4HzjzzTE6FISIiTWNjVCIiItKMrVu3YtGiRcKW9+mnnyIvL0/Y8vSgra0Nl156KWpqavC73/1OlpHDrr788kv86Ec/woABA/DOO+/E3OtNRET6wnIYIiIioiiSkpKCP/7xj4iPj8eTTz6J9vZ22Z6rt7cXv/nNbwAAjz76KAMgRESkecwEISIiIiIiIqKYwEwQIiIiIiIiIooJDIIQERERERERUUxgEISIiIiIiIiIYgKDIEREREREREQUExgEISIiIiIiIqKYwCAIEREREREREcUEBkGIiIiIiIiIKCYwCEJEREREREREMYFBECIiIiIiIiKKCQyCEBEREREREVFMYBCEiIiIiIiIiGICgyBEREREREREFBMYBCEiIiIiIiKimMAgCBERERERERHFBAZBiIiIiIiIiCgmMAhCRERERERERDGBQRAiIiIiIiIiigkMghARERERERFRTPj/5SIpIzzDAHIAAAAASUVORK5CYII=\n", "image/svg+xml": [ "\n", "\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2021-07-29T16:55:46.256647\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.3.4, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n" ], "text/plain": [ "
" ] }, "metadata": { "image/png": { "height": 370, "width": 544 } }, "output_type": "display_data" } ], "source": [ "fig, ax = plt.subplots()\n", "ax.scatter(df['t_out'], df['hvac'])\n", "ax.set_xlabel('t_out (F)')\n", "ax.set_ylabel('hvac (kWh)');" ] }, { "cell_type": "markdown", "id": "f00047a6", "metadata": {}, "source": [ "We see three clear regions here, heating, cooling, and off.\n", "Let me separate the data in different dataframes corresponding to these three regions." ] }, { "cell_type": "code", "execution_count": 7, "id": "8fa1d6a6", "metadata": { "tags": [ "hide-input" ] }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABEEAAALkCAYAAADgYCuzAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdeVxTV/o/8E/CFlAEISooIBaqXcCtiiK0M1q7YdvpOi21rXSZLtp2dMYu2sVuo87UGWvV6XQ6rXZVu/qrtbWrXVgUtxapSoWiyCaCshkCgdzfH3wT2clybnJv8nnPa16vSO49OaRJyHnuc55HI0mSBCIiIiIiIiIiD6d19wSIiIiIiIiIiFyBQRAiIiIiIiIi8goMghARERERERGRV2AQhIiIiIiIiIi8AoMgREREREREROQVGAQhIiIiIiIiIq/AIAgREREREREReQUGQYiIiIiIiIjIKzAIQkRERERERERegUEQIiIiIiIiIvIKDIIQERERERERkVdgEISIiIiIiIiIvAKDIERERERERETkFRgEISIiIiIiIiKvwCAIEREREREREXkFBkGIiIiIiIiIyCv4unsCpA4VFRX49ttvrf+OiYlBYGCgG2dEREREREREnqypqQklJSXWf8+YMQORkZFOjckgCNnk22+/xbPPPuvuaRAREREREZEXmz17tlPnczsMEREREREREXkFBkGIiIiIiIiIyCtwOwzZJDo6utO/n3rqKYwZM8ZNsyEiIiIiIiJPV1BQ0KksQ9d1qSMYBCGbBAUFdfr3mDFjMGnSJDfNhoiIiIiIiLxN13WpI7gdhoiIiIiIiIi8AoMgREREREREROQVGAQhIiIiIiIiIq/AIAgREREREREReQUGQYiIiIiIiIjIKzAIQkRERERERERegUEQIiIiIiIiIvIKDIIQERERERERkVfwdfcE3G316tVYs2aN3edde+21WL58eaefmc1mfPzxx9i8eTMKCgpgMBgwZMgQTJw4ETfffDMmT57c77gixiAiIiIiIiKi7rw+COIoPz+/Tv9uaGjA3LlzkZub2+nn5eXlKC8vx9atW5GRkYHHHnus1zFFjEFEREREREREPfP6IMjNN9+MmTNn9ntcaWkpFixYAJPJhCFDhmDevHnW+yRJwvz5863Bi9TUVKSnp0Ov1+PgwYN49dVXUVZWhnXr1iEsLAz33HNPt/FFjEFEREREREREvfP6IMiQIUMwZMiQPo9paWnB4sWLYTKZoNVq8c9//hMRERHW+7ds2YLMzEwAwHXXXYdly5ZZ7xs/fjyuuOIKzJ49G4WFhVizZg2uvvrqTueLGoOIiIiIiJxnNpvR2NiI+vp6tLS0oK2tzd1TIlINHx8f+Pv7Y9CgQRg4cCC0WmWVIvX6IIgt1qxZgwMHDgAA7rzzTkyZMqXT/evWrQMADBw4EI8++mi380NDQ/HMM89g9uzZaG5uxptvvolHHnlE+BhEREREROSchoYGlJWVQZIkd0+FSJVaW1vR3NyMhoYGaDQajBgxAsHBwe6elhWDIP04dOgQXnvtNQBATEwMHnzwwU73Hzt2zBogmT59OkJDQ3scZ9KkSRg1ahSKi4uxbdu2TgEMEWMQEREREZFzegqAaDQa+Pj4uHFWROrS1tZmfQ9JkoSysjJFBUIYBOnHc889h9bWVgDAE088AZ1O1+n+PXv2WG9PnTq1z7GSkpJQXFyMsrIylJSUICYmRtgYRERESmcwmlBd2wRjSxt0/j7QhwYiSOfX/4lERC5gNps7BUAGDhyIsLAwBAUFQaPRuHl2ROohSRIMBgNOnjyJxsZGayBk9OjRitgawyBIH77++mvs3r0bAJCSkoLf/e533Y4pLCy03o6Nje1zvOjoaOvtw4cPWwMYIsYgIiJSIkmSsL+oGluzirEjvxJm85mrq1qtBskJkUhLiUVinJ6LDCJyK8tiDWgPgERFRfFzicgBGo0GAwYMQFBQEEpLS63vrcbGRgwaNMjd02MQpC+rV6+23n7ooYd6PKaystJ6e/jw4X2OFxkZ2eN5IsYgIiJSmsLSWqzcsBcllQ093m82S8jKK0dWXjliIoKxIH0i4qNCXTtJIqL/U19fb70dFhbGAAiRkzQaDcLCwtDY2Aig/T3GIIiCZWdn49ChQwDat6CMHz++x+Pq6uqstwcMGNDnmEFBQdbbDQ1nvhCKGMMW5eXlKC8vt+sci4KCAofOIyIi77SvoApL1+fC2GJbR4WSygYsWpuJxRlJmDBmqMyzIyLqrqWlBUD7wq3jd24icpxlO5kkSdb3mLsxCNILS7cWALj77rt7Pa7jf8iu9UK66nh/x/NEjGGLDz/8EGvWrLHrHCIiInsVltbaFQCxMLa0Yen6XCybl8qMECJyOUsbXB8fH2aBEAliKSzc2tqqmFbT7q9KokBFRUX48ccfAQBjxozpsRaIRcdK0f19WHasMt2xIIyIMYiIiJRAkiSs3LDX7gCIhbGlDS9u2MvWlERERCQLrqJ78Omnn1q/fF133XV9HtsxVc5oNPZ5bHNzs/W2v7+/0DGIiIiUYH9Rda81QGx1tLIB+UU1gmZEREREdAa3w/Tgq6++AtCelXHFFVf0eWzHGh5NTU19FnoxGAzW2yEhIULHsMX111+P5ORku86xKCgowLPPPuvQuURE5D0+yzoiZJyt2cVIjNcLGYuIiIjIgkGQLo4cOYLDhw8DACZNmoRhw4b1efyIESOstysqKvo8vqKiwnq743EixrDF8OHD++0+Q0RE3sNgNKG6tgnGljbo/H2gDw1EkM7PqfFy8iv6P9AGOfsrYDCanJoPERERUVcMgnTxzTffWG/3lwUCAGeffbb1dklJSa9dZADg2LFj1tvx8fFCxyAiIrKFJEnYX1SNrVnF2JFfCbO5Y60pDZITIpGWEovEOL3dhQGra5s6jecMs1lCTZ2RQRAiIiISikGQLnbt2mW9PWXKlH6PHz9+vLXlz+7du3H11Vf3emxubi4AIDIyElFRUULHICIi6k9haS1Wbtjba80Os1lCVl45svLKERMRjAXpE+3q0uJoMdTeNDW3Ch2PiIiIiIVRu/jpp58AAMHBwYiLi+v3+MjISGvmxhdffIHGxsYej9u9ezeKi4sBAJdddpnwMYiIiPqyr6AKi9Zm2ly0tKSyAYvWZmJfQZXNj6Hz9+n/IDsEBvBaDRGRN1u9ejXGjBmDMWPG4KOPPrL5vJ07d1rPe+yxx2ScofNOnTqFEydOdPv5Rx99ZP0d3n//fTfMzHMxCNLB8ePHcerUKQBAYmKizWnAt912GwCgtrYWS5Ysgdls7nR/XV0dlixZAgDw8/PDrbfeKssYREREPSksrcXS9bl2Z2oYW9qwdH0uCktrbTpeHxoIrda+LTS98dFqEB6iEzIWERGR0pjNZmzatAmXX345fvvtN3dPx6swCNLBkSNHrLdjYmJsPm/WrFlITU0F0N5e97bbbsMXX3yBn376CZs2bcK1116LwsJCAMCDDz6I6OhoWcYgIiLqSpIkrNyw1+GtKsaWNry4Ya+1dXxfgnR+SE6IdOhxupqaGMl6IERE5LG2bNmCp556CrW1te6eitdhnmkHHTuvREba9yVu1apVuO+++7Br1y7s3r0bu3fv7nZMRkYG7rnnHlnHICIi6mh/UbXNW2B6c7SyAflFNTa1rE1LiUVWXrlTjwcAs6aNcnoMIiJPI7qrF7lPW1vfFyeuu+46XHfddS6ajXdhEKSD06dPW29HRETYde7AgQPx5ptvYvPmzfjkk09w6NAhNDQ0YPDgwZgwYQJmz56NqVOnyj4GERFRR59lHREyztbsYpuCIIlxesREBDsVeBkZEYyEuHCHzyci8iRydvUi8kYMgnQwe/ZszJ492+HztVqt0xE7EWMQEREB7VcMc/Ir+j/QBjn7K2Awmvq94tjU3Ir0S8dg5Ya9aDGZ+zy2Jzp/H8xPn8gv8kREkL+rF5E3YhCEiIjIQ1XXNnW6YugMs1lCTZ2xxyBIX1cp7aHz98HijCR+gSciQntXL3uKWlu6ei3OSMKEMUNlnp36mc1mfPLJJ9i2bRvy8/NRW1uLAQMGYNSoUfj973+PW265BYMGDepzjMrKSrz//vvIzc1FcXEx6urq4OPjg5CQEJx33nm47LLLcOWVV8LX98yy+6OPPsKiRYs6jXP77bdbbxcUFHQ77vnnn8eNN95oPWb16tVYs2YNfHx8cODAAdTW1mL9+vX45ptvUFZWBkmSEBMTg0suuQS33357n79HW1sbPv74Y+tOBIPBgKFDhyI1NRV/+tOfEB0djcTERLS0tOCBBx7Agw8+aPuTrFAMghAREXkoR4uh9qapubXbz/q7SmmrkRHBmM8rmEREAJzv6rVsXio/T/tQVlaGBx54AAcOHOj089raWuzbtw/79u3DunXrsGLFClx44YU9jrF+/XqsWLECJpOp231NTU2orKzEt99+i02bNuF///sfBgwYIMvvkp+fj3vvvRfV1dWdfn7o0CEcOnQImzZtwltvvYXY2Nhu5zY0NGDu3LnIzc3t9POysjJs2rQJn3zyCVasWCHLvN2JQRAiIiIPpfP3ETpeYEDnrw32XqXsykerwdTESMyaNgoJceHcAkNEBHFdvVYvnM7P1R6cPHkSt9xyCyorK6HRaHDllVfisssuw7Bhw1BfX4/s7Gxs2LABtbW1uP/++7Fu3TpMnjy50xhbtmzBsmXLAABDhgzBrbfeivPOOw8hISGoqqrCrl27sGnTJhiNRuzduxevvPIK/vKXvwAAZsyYgc2bN+Obb77B6tWrAbRneiQkJNj9u5jNZtx7772oqanBddddh8suuwyDBw/G4cOH8eqrr+LIkSOoqqrCk08+ibfeeqvbuXfffTd++uknAEBiYiJuu+02xMbG4vjx4/jwww/x3XffYf78+Wht7X4RRM0YBCEiIvJQ+tBAaLUaIVtifLQahIforP929ColAPj7avGXWyZiwpih7GpARNSFq7t6qUV5eTkOHjxo07ElJSW93vf000+jsrISfn5+WLNmDX7/+993uj81NRU33HAD0tPTUVtbi0cffRRffPEF/PzO/L1auXIlACA4OBjvvPMORo4c2WmMSy65BJdffjlmz54Ns9mMzz//3BoECQ0NRWhoaKffJSYmBueee65Nv1tHkiShpqYGK1euxBVXXGH9+bhx4zBz5kzMmjUL1dXVyM3NxbFjxxAdHW09ZsOGDdYASFpaGlasWAEfnzMXTy699FL8+9//xqpVq+yel9IxCEJEROShgnR+SE6IFNKydmpipDVg4exVypZWMzZ8WYBpY4c7PS8iIk/j6q5earF69Wpr5oSjjh49ii+//BIAcNNNN3ULgFicddZZmD9/Pp5++mmUlZXh66+/tgYZysrKMGDAAAwcOBDXXntttwCIxcSJExEVFYWSkhJUVIgpUt6T1NTUTgEQi9DQUFx22WV45513ALTXGukYBHnjjTcAAGFhYXjuuec6BUAs5s6di5ycnG7bZdRO6+4JEBERkXzSUmKFjDNr2ijrbZFXKYmI6Aw5unrRGd999x0kqT07MiUlpc9jf/e731lv5+TkWG+PGDECW7ZswZ49e7oVOO1qyJAhAACTyQSz2f6OabZITU3t9b6YmBjrbYPBYL1dVFSEo0ePAmjPAhk4cGCvY6SnpwuYpbIwE4SIiMiDJcbpERMR7FTQYmREMBLiwq3/5lVKIiJ5uKqrlxotW7YM1113nU3H7ty5s1PHFYuOhVDvv/9+mx/72LFjPf5cq23PKTh9+jRKS0tx7NgxHDlyBAUFBdi7dy9KS0utx5rNZuvxIkVFRfV6X1BQkPV2W9uZ7M2Oz0NiYmKf448bN86J2SkTgyBEREQeTKPRYEH6RCxam+nQ9hWdvw/mp0+0FteT4yqlp3xBJyJyliu6enmzU6dOOXReXV1dt58dPXoU69evx/fff4+ysrIez9NqtbJlgFh0DHR01bEwriUDBkCnTjKDBw/uc3y93vMuVjAIQkRE5OHio0KxOCPJ7kKmOn8fLM5I6tRmkVcpiYjkI3dXL2/XMRti/fr1CA0Ntem8gICATv/+5JNPsHjx4k7tcQcOHIizzjoL8fHxSEhIwJQpU/DMM88osp5Gx3l3DI70xBM7DPFdQURE5AUmjBmKZfNSsXLDXpu2xoyMCMb89ImdAiAAr1ISEclJzq5eBISEhFhvDxgwwKGOLIWFhdYASFBQEObNm4dLLrkEMTEx3QIGp0+fdnrOcuiY/XHy5Mk+j+3vfjViYVQiIiIvER8VijULp2Pp/SlIGTscWm3nL2s+Wg1Sxg3H0vtTsHrh9G4BEIBXKYmI5GTp6iVCx65e1G706NHW2zt27Ojz2OrqaqxZswYff/wxDh06ZP35xo0brZkUTzzxBO6++26MHDmyWwBEkiRUVlYKnL045513nvX2L7/80uex+fn5ck/H5fjNg4iIyItoNBokxuuRGK+HwWhCTZ0RTc2tCAzwRXiIrt8vzLxKSUQkr7SUWCGtzTt29aJ2F154IVauXAmgPZgxZ86cbltdLNavX49XX30VAPDQQw/hnHPOAQAUFxdbj+mrqGhmZiZqas50QWtra4Ov75nltxxFUm117rnnYvjw4SgvL8e2bdvw8MMPQ6fr+e/xBx984OLZyY+ZIERERF4qSOeH6GHBGB0zGNHDgm26YsirlERE8rJ09XJG165e1O7888/HlClTAABlZWVYvHgxWlu7b8vcsWMH1q9fDwAIDAzEH//4R+t9HbeSfPfddz0+zqFDh7B48eJOP2tpaen0b39/f+vtju1rXUGr1WLOnDkA2jNenn766R4LuG7atAnbt2936dxcgZkgREREZBdepSQiko/orl7U2d/+9jfccMMNqK2txaefforCwkLceuutOPvss1FXV4fMzMxOW14eeeQRDBkyxHp+WloatmzZAgBYtWoVjh8/josuugihoaGorKzEd999h08//bRb0KOhoQHBwWeCWx3HfP311xESEgKz2YyJEye6JEvktttuw2effYaff/4ZH3/8MY4cOYLZs2dj5MiRqKmpwZYtW7B169ZO53jKa4pBECIiIrKL5SqlLQVWe8OrlEREvRPZ1Ys6i46Oxttvv40HHngAR44cwaFDh/DEE090O87Pzw9/+ctfcMstt3T6+YwZM5Ceno4NGzagtbUVb7/9Nt5+++1u5yclJSEhIQGvv/46AODw4cMYPny49f7ExERERESgsrISubm5SE9PBwB88cUXiI2NFfgb98zHxwevvPIK7r77buTn52Pfvn3Yt29fp2MGDBiAu+++G6tWrQLQOXtFzbgdhoiIiOxiuUrpaJFUXqUkIuqfpauXrVtjRkYEY9m8VEwYM1Tmmanf2WefjU8//RR/+9vf8Pvf/x5DhgyBn58fAgMDER8fj9tuuw3/7//9P9x55509nv/0009jzZo1uOiiixAWFgYfHx8EBgYiJiYGl112GdauXYs33ngDN9xwg/WcrlkVOp0O69atw4wZMxAaGgo/Pz9ERESgoqJC1t+9o8GDB+O9997Ds88+i6SkJOs8RowYgVtuuQWfffYZLrjgAuvxQUFBLpubnDRSf42BiQDs3r0bs2fPtv77nXfewaRJk9w4IyIicrd9BVUOX6Xkl3QiUprDhw+jtbUVvr6+OPvss909HStJkpBfVIOtWcXIya/oVJjaR6vB1MRIzJo2Cglx4Qwuk3Dbtm3Dn//8ZwDA6tWrcemll9o9hjPvLTnWodwOQ0RERA6xXKVcuWGvTVtjRkYEY376RKZpExHZwdmuXkQ9ue+++6DX6zF16lRceeWVvR6XnZ1tvW3pkKN2DIIQERGRw+KjQrFm4XRepSQicoEgnR+DHiTE8ePHsX37dnz55ZeYOnUq9Hp9t2P27NmDjz/+GEB7ACQmJsbV05QFgyBERETkFF6lJCIiUpebbroJS5YsQV1dHW688UbccsstOO+88zBw4ECcOHECWVlZ+Oijj9DS0gJfX18899xz7p6yMAyCEBERkTC8SklERKR8N910E4qKivDmm2+ivLwcK1as6PG4sLAwLF++HGPHjnXxDOXDIAgRERERERGRF9FoNHj88cdx1VVX4f3338eePXtQXl6O1tZW6PV6REVF4ZJLLsFVV12FsLAwd09XKAZBiIiIiIiIiLzQ2LFjPSrLwxZad0+AiIiIiIiIiMgVGAQhIiIiIiIiIq/A7TBERESkCAajCdW1TTC2tEHn74MgnS8Mxlbrv/WhgSy6SkRERE5hEISIiIjcRpIk7C+qxtasYuzIr4TZLPV6rFarQXJCJNJSYpEYp4dGo3HhTImIiMgTMAhCREREsuma3dExm6OwtBYrN+xFSWWDTWOZzRKy8sqRlVeOmIhgLEifiPioUBlnT0RERJ6GQRAiIqJe9LWA9xRy/I59ZXdYsjlGx4Riw5cFMLa0OfQYJZUNWLQ2E4szkjBhzFCn5ktERETeg0EQIiKiDmxZwKt9O4acv2N/2R0dszmcZWxpw9L1uVg2L5UZIURERGQTBkGIiIj+jz0LeLVux5Dzd9xXUIWl63Mdzu5whLGlDS9u2IvVC6erNihFRERErsMWuURERGhfwC9am2lzfQrLdox9BVWyzstgNKGksh6/lpxCSWU9DEaTw2PtLTiOR1f/KMvvWFha6/IAiMXRygbkF9W4/HHdTeRrg4iIyFswE4SIiLyeowt4ubZjyLFdZfueY1i5YS+k3puv9MiW31GSJKzcsNctARCLrVnFSIzXu+3xXcUbtmsRERHJiUEQIiLyas4u4EVvx5Bju8reQ8cdCoBY9Pc77i+qtjm7RC45+8thMJo8rnBtR96wXYuIiEhu3A5DREReTcQCXtR2DDm25BSW1uL5dbkOB0As+vodP8s64tzgApgloKbO6O5pyEap27WIiIjUhkEQIiLyaqIW8Fuzi50639ktOYWltd3us2S5mFrNTs3Noqff0WA0ISe/Qsj4zjpV75lBEDleG0RERN6KQRAiIvJaIhfwOfsrHC5MKWpLjtQl3UP0NpWefsfq2qZOdSncyWhyX00Sucj12iAiIvJWrAlCREReS+QC3myWUFNntKsmhcFoQnVtk9AtOR2Lg4reptLxd7QU6Nz4VYHQx3CGzs/H3VMQTq7XBhGRWhUVFWHr1q3Izc3Fb7/9hvr6evj5+SEsLAznn38+Zs6cicsuuwwBAQHunmqfxowZAwCYOHEiNmzYYP15aWkpLr74YgDAVVddhRUrVrhlfp6MQRAiIvJaoruZNDW39ntMX909nLU1+0yHFLm2qTQ1t/ZboNNdBg/SuXsKwoncrsUgCBGpWVlZGZYuXYpvvvmmW3abyWSCwWBAaWkpvvjiC7z44ot45plncOGFF7pptqRkDIIQEZHX0vmLzRwIDOj7z6rcwQPLdpUgnZ9s21SOlNfh1f+X79Z2uD3RaoDwEM8KgsixXcuTu+cQkefKycnBgw8+iIaG9r+f0dHRuPrqqzF27FiEhYWhpaUFhYWF2LJlC3bv3o2ysjLcc889eO6553DDDTe4efakNAyCEBGpiGX7hLGlDTp/H+hDA7mocUKQTuyfwcCA3oMq+wqqHCpuaY+O21XkeBytVoP/bt6PZpOYQqsiTU2M9Lj3gru3axGR8pibDWitr4G5xQitvw6+g8KhDQhy97RklZ+fj/vvvx9NTU0AgHnz5mHu3Lnw9e38N3zSpEm4+eab8eGHH+Kpp55Ca2srlixZglGjRuGCCy5wx9QdEhUVhYIC5Ww19UQMghARKVxf2ye0Wg2SEyKRlhKLxDg9NBqNG2eqPgZj/9tX7NHU3HPgwdHuHo7Nof13Ep3lYhlT9HMmypUpZ7l7CsK5Y7sWESmPJEkwHs1H/Z5tOF2QC0gdAtEaLQaMmYJBF1wG3cgEj/se0NLSgoULF1oDII888gjuuuuuPs+5/vrrUVtbi3/84x9obW3Fs88+i82bN3vcc0OOYxCEiEjB+ts+YTZLyMorR1ZeOWIigrEgfSLio0JdO0kVc8Ui09nuHvY6ftIAnb8PgnS+0Go1QrfEKDUAMjIiGAlx4e6ehnCu3q5FRMrTXPEbqra8BNOJYz0fIJlx+lAOTh/Kgd+QaAy96iEERHpOUPiDDz5AcXF7e/YJEyb0GwCxmDNnDjZu3IiSkhIcOnQIO3bsQHJyspxTJRXhX0MiIoWyd/tESWUDFq3NxOKMJEwYM1Tm2XkGVywyRbep7c8/3toNoD1LaHBwAGrqjELGDdL5KjIIovP3wfz0iR55hU8fGigskOWj1XhczRQiT2f47Wcc/+AfkEy2fY6bThxD+VtPYtgNjyDorHEyz841Nm7caL39wAMP2Hyer68v5s6di19//RUXXHABzj///G7H1NXVYdOmTfjuu+9QVFSE06dPY9CgQRg9ejQuueQS3HDDDf12mBExRld9dYfZuXMnbr/9dgDAO++8g/Hjx+O9997Dp59+iqKiIjQ1NWHo0KFISUnBHXfcgdjY2D4fKycnBxs2bMDevXtRW1uLkJAQTJgwAbfddhumTJmCu+66C5mZmUhKSsJbb71l1++hZAyCEJHqeWKdDEe3Txhb2rB0fS6WzUtlRogNXLHIFN2m1laWGhAi+PlqZdtKEeCnxS2XnYPcXyrxS/FJu87V+ftgcUaSx77Wg3R+SE6IRFZeudNjeWLNFCJP1lzxm10BEAvJZMTxD/6B4bc9p/qMkMrKSmttjKCgIEydOtWu86+99tpe7/vmm2+wePFi1NbWdvp5TU0NcnJykJOTg//9739YtWoVxo4dK9sYzqivr0d6ejry8vI6/fzYsWPYuHEjPvzwQ7z44ouYOXNmt3MlScLy5cuxfv36Tj+vrq7GV199ha+++gr33HOP8DkrBYMgRKRKnlwnw9ntE8aWNry4YS9WL5yuut/d1eReZMrVptaVNBrgnmsSsPaDvP4PttPIiGD8+eYJaGpuRUHJKWg1gK3xqJERwZjvBdu/0lJihbw+Z00bJWA2ROQKkiShastLdgdArOebjKjashpRf/qXqr8H/PLLL9bbEyZM6FYI1VHfffcdHnroIbS2tkKr1eIPf/gDLr30Uuj1epSXl+P//b//h2+//Rbl5eW4/fbbsXHjRpxzzjnCx3DWU089hRMnTmDy5Mm4+eabERMTg+PHj+Odd95BTk4OTCYTFi1ahMmTJyMkJKTTuS+88II1ADJkyBD86U9/wtixY2EwGPDNN99g06ZN+O9//wt/f3+hc1YKBkGISHU8vU6GiO0TRysbkF9Ug8R4vaBZeS45F5lytal1FY0GWJA+ESOGDBQ67riz9bhp5hgEBvhg5cZ9Nr/etRogeexwzJo2Cglx4ar+cm+rxDg9YiKCnfpM8NSaKUSeyng0v/caIDYynSiBseQXBI5MEDQr1ysrK7PeHjFihJAxT58+jcWLF6O1tRW+vr5Yu3Ytfv/731vvHzt2LC6//HK88847ePbZZ9HU1IS//OUv+PTTT6HVaoWNIcKJEydw66234oknnuj09/Diiy/Gn/70J2RmZqK+vh5fffVVpzbBBQUFeOONNwAAcXFxePvttxEWFma9PyUlBZdccgn+9Kc/oaWlRdh8lUTcfwUiIhfYV1CFRWszbV4QWOpk7Cuoknlm4ojaPrE1u1jIOJ7Ossh0Rm+LTFcVQ5WDn68WT989FdMviBZeO+Xea8eitc2MRf/Osmtx7+fng8umjERivPoyvByl0WiwIH2iw/8NPLlmCpGnqt/zhaBxtgkZx11Onz5tvT148GAhY3700UeoqakBANx9992dghcdzZ49G2lpaQCAoqIifPvtt0LHECEkJAQPP/xwt893rVaLG2+80frvX3/9tdP9b731Flpb27e4Llu2rFMAxCI5ORn33nuv0PkqCYMgRKQaztbJKCytlWdiAoncPpGzvwIGo0nIWJ5MzkWmHG1qXWFkRDD+8eCFmHjOMABnaqeI4KPVoK6x2aH3crOK3ssixUeFYnFGkt2vJ0+vmULkiczNBpwu2ClkrNOHdsLcbBAyljv4+Jz5zBOVkfDDDz9Yb99yyy19Hjt79uwezxMxhgiTJk2CTtdzweuYmBjrbYPhzGtAkiRs374dADB69GiMG9d7Ad309HRBM1UeBkGISBVE1cmQJGVvTRC5fUJkYUxPJ9ciU2TwQKTwEF23efloNUgZNxxL70/B6oXTO/1OltopIkxJiMDLH+V5/HtZtAljhmLZvFSbs5ZGRgRj2bxUdooiUpnW+hpAMosZTDKjtcG+gtNK0rGOxalTp4SMefjwYQBAZGQkhg0b1uexY8eOtQZiOmZTiBhDhKioqF7vCwoKst5uazvz97aqqgrV1dUAgISEvrdK6fV6YduQlIY1QYhIFbylTobo7RNydfTwRJZFZl/1ZjqypTCnyMKrIp1qaMZrj89EU3MbmppbERjgi/AQXZ/dQ0TVTjk3NgzZec5lO6nhvSyH+KhQrFk4HflFNdiaVYyc/IpOQVMfrQZTEyO9qmYKkacxt4i9eGFubhI6nit1bO9aWVkpZExLMCU8vP86Sf7+/hg0aBBOnTrVKQgjYgwRAgMDe72v4+d/x4sGlgAIgB63wXSl1+s71WbxFAyCEJEqiKyToeSFk+jtE4EB/Ji3hxyLTFHBA5HMZglNzW2IHmZ7LRRRBToPHhFzVVLp72W5aDQaJMbrkRivh8FoQk2d0eZAFhEpn9a/5+0NDo8X0PtCWekSEhLg6+uL1tZW/PTTT2hpabGrW0llZSX+/e9/IykpCZMnT8awYcPsziK0HN+xoKmIMdzFZDqzTdpsFpRxpEL8dkxEiidHnQylLhQs2ydEbInx0WoQHiL2y5Q3EL3IFBE8kIO9WUKW2imL1mY6lLGk8/fBfdeNxeP/ybb73J4o/b3sCkE6P6/+/Yk8ke+gcECjFbMlRusD3+D+r/Yr1YABA5CUlITs7GwYjUbs2rULKSkpNp9vafW6adMmXHLJJVizZg1CQkJQVVVlLWzal+bmZjQ0tP/tDg0Ntf5cxBju0rHArC2ZKaKzV5TC/eEoIqJ+eFOdDJG1F6YmRipugWQwmlBSWY9fS06hpLJe8YVbg3R+iB4WjNExgxE9LNih59PZwqtycSRLyNnaKYMG+HvNe5mIyBHagCAMGDNFyFgDxiRBGxDU/4EKdv3111tvv/nmmzaf19bWhnfffdf676uvvhoAMGbMGABARUUFjh8/3ucYeXl51noaZ511lvXnIsZwl+joaAwaNAgA8Msvv/R5bF1dHY4dc65Vs1IxCEJEiudtdTLSUmKFjDNr2igh4zhLkiTkFZ7Asjdykf7k55j3wnb8ddUPmPfCdqQ/+TmWv7ELeYUnPLrQpaPBA7k4kyXkTIFOb3svExE5YtAFlwka53Ih47jTFVdcgbi4OADAd999hw8//NCm81555RUUFhYCaO+CMnPmTADAhRdeaD2mY5CkJx3v75iBImIMd9FqtdaWvr/++mufgZCPPvrIY7+bMQhCRIrnbXUyLNsnnDEyIhgJcf0X7JJbYWktHlixHY+/nI3svIpuWQBms4SsvHI8/nI2Hlix3aNbn9obPJCTs1lCltopS+9PQcrY4TZ3mvG29zIRkSN0IxPgNyTaqTH8hsRAF3O+oBm5j4+PD5YtWwZf3/bP+yeffBKvv/56p44nHZnNZvznP//BqlWrAAB+fn54/vnnrfU4rr/+euu2lNdee63XtrWbNm3CZ599BqC9QOsll1xivU/EGO6UkZFhfT4WL16Murq6bsfk5+fjpZdecvXUXIbfHohI8bytToaI2gvz0ye6vTPEvoIqLF2fa/PvUFLZgEVrM7E4I8lj23r2V3jVVURkCTlSO8Xb3stERI7QaDQYetVDKH/rSUgm+7f9afx0GHrVg27/HiDKuHHj8MILL+Dhhx9Ga2sr/v73v2PDhg34wx/+gPHjxyMkJASNjY3Yv38/Nm/ejKKiIgDtAZC///3vGDdunHWsgQMHYtmyZZg7dy5MJhPuu+8+/OEPf8Cll16K8PBwVFRU4JNPPsHXX38NAAgICMCqVavg5+cndAx3Ov/885GRkYHXX38dhw4dwh/+8AfceeedSExMREtLC3788Ue89dZbMBo9d8spgyAdHD58GBs3bkR2djYqKythNpsxYsQIXHjhhcjIyEBkZO/79M1mMz7++GNs3rwZBQUFMBgMGDJkCCZOnIibb74ZkydP7vfxRYxB5IlEthlVYp2Mnli2T9gTRADO1F7oq22rKxSW1to9d6B969PS9blYNi/V7b+DXHoLHry97SD2FZyQ/fHlyBKytUCnN76XiYgcERB5Fobd8AiOf/APuwIhGj8dht3wCAIi3V9/QqS0tDQMGzYMTz75JIqKilBSUoLVq1f3enxsbCz+9re/YdKkSd3umzFjBtasWYPHHnsMDQ0N+Oijj/DRRx/1OMa//vUvnHPOObKM4U4PP/ww6uvr8cEHH6CiogJ/+9vfOt2v0Wjw8MMP48UXX4TJZLKrK48aMAjyf/79739j7dq1aG3tvL+4qKgIRUVF+OCDD/Cvf/0Lv/vd77qd29DQgLlz5yI3N7fTz8vLy1FeXo6tW7ciIyMDjz32WK+PL2IMIk8mqs2oUupk2MKyfeJf7+7BseON/R4fM2wgFtxygduDB5IkYeWGvQ7XfzC2tOHFDXuxeuF0j7mK1ZuOwYMbZpwtexBECVlC3vheJiJyRNBZ4zD8tudQteUlmE70X6DSb0gMhl71oMcFQCwuuOACfPrpp/juu+/w9ddf45dffkF5eTkMBgP8/f2h1+sxduxYXHrppbj44outW2h6MnPmTHz99dfYsGEDvv/+exQXF+P06dMYMmQIzjrrLFx11VW4/PLLodP1nnEoYgx30Wq1+Nvf/oYrrrgC7733Hvbt24dTp05h0KBBmDRpEu68806MGzcOK1asANDeqceTMAgCYM2aNdZI4uDBg3HnnXdiwoQJaG1txbZt2/Dee++hsbERDz30ED766CNrcR6g/cv+/PnzrcGL1NRUpKenQ6/X4+DBg3j11VdRVlaGdevWISwsDPfcc0+3xxcxBpGnE9FmVCl1Muylga0LVmUEDPYXVTvdDvZoZQPyi2qQGK8XNCvlk7uVrlKyhLz5vUxEZK+AyLMQ9aeVMJb8gvrd23C6YGfn9rlaHwwYk4RBF1wOXcz5Hn/xQKvVYsaMGZgxY4bTY4WGhuL+++/H/fff75YxCgoKevx5VFRUr/dNmTKl1/s6GjlypE3HpaamIjU1tcf7Tp48aS2MOnSoZ21T9vogyMGDB/Hyyy8DAEaMGIE33ngD0dFnChElJyfjvPPOw1NPPQWj0YhVq1Z1KhKzZcsWZGZmAgCuu+46LFu2zHrf+PHjccUVV2D27NkoLCzEmjVrcPXVVyMiIqLTHESMQeTpPKVOhj3srqlxXBk1NT7LOiJknK3ZxV4VBHH2Nd6XkRHBmJ8+0e0BEMA738tERM7QaDQIHJmAwJEJMDcb0NpwEubmJmgDAuEbHKb6NrjkWv/85z9RUVGBUaNGYd68eb0el5OTY71taQvsKby+O8xLL72E1tZWaDQavPjii50CIBY33XQTRo8eDQD49ttvOxWJWbduHYD2AjmPPvpot3NDQ0PxzDPPAACam5t77G8tYgwib+Bom1GlXAG3h7M1NdzVZcVgNCEnv0LIWDn7K2AwmoSMpRaOvsa1Wg26xgR669CiBN70XiYiEkkbEAR/fRR0I86Gvz6KARCyW0tLC7Zs2YKXXnrJeiG+qxMnTlg77Pj7+1vb6noKr84EOXXqFH788UcAwGWXXYaxY8f2euxdd92FPXv2YPDgwTAYDNDpdDh27BgOHDgAAJg+fbq1VVJXkyZNwqhRo1BcXIxt27bhkUcesd4nYgwib2Kpk7Fyw16b0umVdAXcVmquqVFd2ySs24nZLKGmzuh1xS8dfY0P1w+wqUOLUnjDe5mIiEhprr/+erz99ttobW3Fgw8+iBtvvBHJyckIDw/HqVOnkJ+fj40bN6KqqgoA8Ne//hVDhgxx86zF8uogSHZ2Nkym9quMV155ZZ/HXnPNNbjmmms6/WzPnj3W21OnTu3z/KSkJBQXF6OsrAwlJSWIiYkRNgaRt+mvzaiPVoOpiZGYNW0UEuLCVZc2r+aaGqK3cTQ1t/Z/kAdy9DWu5KBHTzz9vUxERKQ0o0ePxrJly/Dkk0/CYDDgjTfewBtvvNHtOF9fX/z5z3/GnDlz3DBLeXl1EOTQoUPW2x2zQMxmM06cOIHTp09j2LBhvVbDLSwstN6OjY3t87E6brM5fPiwNYAhYgwib9Rbm1E1XAHvj5prati7vaE/gQHu/TNlMJpQXdsEY0sbdP4+0IcGuuy15cmv8Y685fckIiJSiquvvhqTJ0/Gxo0bkZWVhaNHj8JgMCAkJAQRERFITU3FNddcg7PO8sxOQ14dBDl8+DAAwM/PD0OHDkV1dTVWr16Nzz//HHV1dQAAHx8fTJ48GQ8++GC3PtOVlZXW28OHD+/zsSIjI3s8T8QYtrK023WELdWFidylY5tRtZOjpoYrnxt9aCC0Wo2QLTE+Wg3CQ1zfVk6SJOwvqsbWrGLsyK/s9LtotRokJ0QiLSUWiXF6l2UmeNJrvC/e8nsSERG5W2RkJBYsWIAFCxa4eyou59VBkNraWgDtBUl/+ukn3HfffdafWbS1tWHHjh3YuXMnHnnkEdx5553W+yyBEqD/3slBQWeKFjU0nElzFzGGrT788EOsWbPG7vOIyHXUXlMjSOeH5IRIZOU5FnDtaGpipMsXxIWltX3WqDCbJWTllSMrrxwxEcFYoPIaFe7MdCEiIiJyB68Ogpw+fRpAe8eV++67D3V1dbjttttw8803IyYmBidPnsTnn3+Ol156CQaDAX//+98RERGBtLQ0AO2VdS10ur6vVna8v+N5IsYgIs/hCTU10lJihQRBZk0bJWA2trO7JXGlMloS20uJmS5EREREruLVQZCmpiYAgMFggMFgwPPPP48bb7zRen9ERATuuOMOTJgwAbfeeitMJhOWL1+Oiy++GAEBAfDxObP3vb8vipLU8Uvmmc7EIsYgIs/hCTU1EuP0iIkIdqq468iIYCTEhQucVd+cbUm8bF6qKjJCvC3ThYiIiKgrrw6CdMysSE5O7hQA6Wj8+PG44YYbsGHDBhw/fhzZ2dmYPn16p+0pRqMR/v7+vT5Wc3Oz9XbH40SMYavrr78eycnJdp8HtNcEefbZZx06l4hs5wk1NTQaDRakT8SitZkOZbbo/H0wP32iy7IQ1NyS2B7ekulCRERE1BevDoIMHDjQevvSSy/t89gZM2Zgw4YNAICffvoJ06dP71TDo6mpCYMGDer1fIPBYL0dEhJivS1iDFsNHz683+KrROReaq+pYREfFYrFGUl2Z1fo/H2wOCPJpdkHam5JbCtvyXQhIiIi6o9X76kYMmSI9XZERESfx3YMHpw6dQoAMGLECOvPKir67ubQ8f5hw4ZZb4sYg4g8S1pKrJBxXF1To6sJY4Zi2bxUxEQE23T8yIhgLJuX6vKsA5EtiZVIVKZLxy2ZRERERGrl1UGQMWPGWG937NLSk46FSC3ZGmeffbb1ZyUlJX2ef+zYMevt+Ph4620RYxCRZ7HU1HCGq2tq9CY+KhRrFk7H0vtTkDJ2OLTazttFfLQapIwbjqX3p2D1wukuzzaQoyWx0ojMdHEFg9GEksp6/FpyCiWV9Yp8TomIiEi9vHo7zPjx46239+zZg2uvvbbXYw8fPmy9HRUVZT1fo9FAkiTs3r0bV199da/n5+bmAmjvx2w5X9QYRORZ1FZToz8ajQaJ8XokxuthMJpQU2dEU3MrAgN8ER6ic2tLVrW3JLaFyEwXubb7sGMNERERuYpXZ4IkJydbt8R8/vnnqK6u7vXYjz/+GEB7N5cZM2YAaA9GWAIpX3zxBRobG3s8d/fu3Sgubk+TvuyyyzrdJ2IMIvI8lpoa9naLcUdNDXsE6fwQPSwYo2MGI3pYsNsDBp7Qkrgvash0KSytxQMrtuPxl7ORnVfRLShl6Vjz+MvZeGDFdhSW1gqfAxEREXkPrw6C+Pj44K677gIANDY2YuHChTh9+nS349544w3k5OQAAC655BIMHXpmv/ptt90GAKitrcWSJUtgNps7nVtXV4clS5YAAPz8/HDrrbd2G1/EGETkedRSU0PNPKElcV/kyHQRaV9BFRatzbR5u46lY82+giqh8yAiIiLvoaxva24wZ84cfPfdd9ixYwdycnJw7bXXYs6cOTj33HPR0NCATz75BJ9++ikAICwsDE899VSn82fNmoWPPvoImZmZ+PTTT1FZWYnbb78dw4YNQ0FBAV555RWUlZUBAB588EFER0d3m4OIMYjIM1lqauQX1WBrVjFy8jtfKffRajA1MRKzpo1CQlw4twrYyRNaEvdFyZku7FhDRERE7uD1QRCtVotXXnkFjz76KLZt24ajR4/i2Wef7XZcbGws1q5di/Dw7oUGV61ahfvuuw+7du3C7t27sXv37m7HZGRk4J577ul1HiLGICLPpOSaGmrnKS2Je6PUTBdRHWtWL5zOwB8RERHZxeuDIACg0+mwatUqZGdn48MPP8TevXtRXV2N4OBgjBw5EldeeSWuueYaDBgwoMfzBw4ciDfffBObN2/GJ598gkOHDqGhoQGDBw/GhAkTMHv2bEydOrXPOYgYg4g8X5DOT3ELbbVLS4kVEgRxd0vinig100Vkxxq5irUSERGRZ2IQpINp06Zh2rRpDp2r1Wpx3XXX4brrrnP48UWMQUTKYTCaUF3bBGNLG3T+PtCHBjKAoUCWlsTOLMqV0pK4K6VmuqihYw0RERF5JgZBiIgEYqtP9fG0lsRdKS3TRY6ONQwuEhF5j9LSUnzxxRfIzMzE0aNHUVNTA0mSEBYWhjFjxuCiiy5CWloaBg8e3O9YJ0+exNq1a7F9+3acOHECgYGB0Ov1+Pe//43Y2Nh+7yd1YhCEiEiQwtJarNywt9eMAkurz6y8csREBGNB+kQWdlQIS0tiewt1Kr0lMaC8TBc5OtYwCEJE5PkaGhqwcuVKvPfeezCZurdsr6ioQEVFBb777jusWLECd9xxB+677z74+/v3OF5TUxPS09Nx5MgR689aWlrQ2NiIyMjIfu8n9WIQhIhIgH0FVXYtoC2tPhdnJLGlrUJYWhL3FcjqaGREMOarIJCltEwXJXesISIiZSopKcG9996L3377DQAQFBSEWbNmITk5GREREdBqtTh27Bh+/PFHbNu2DQaDAWvXrsX333+PV199FWFhYd3G/H//7/9ZAxwTJ07Efffdh9DQUBgMBgQEBGDjxo193k/qxSAIEZGT2OrTc3hqS2IlZbootWMNEZEaGExNOGmohbG1GTrfAIQFhSLIL9Dd05LVyZMncdttt6GyshIAkJaWhieeeKJb184JEybg6quvxp///Gc89NBD+OWXX5Cfn4+MjAxs3LgRQUFBnY4/fPiw9fbzzz+PuLg4u+4n9eI3ByIiJ7DVp+fx1JbESsl0UWrHGiIipZIkCb9U/YovCr/HrrKfYZbM1vu0Gi2SRozHpfEX4fyhoz3yu8Rf//pXawBkzpw5WLx4cZ/HR0VF4e2338a9996L3NxcFBQUYPny5Xj22Wc7HWcwGKy3R44c2W2c/u4n9WIQhIjICWz16dk8rSWxEjJdlNqxhohIiX47WYK1O9fjWH3PBaXNkhk7SvdiR+leRA+KxLwpGTgrLMbFs5RPdnY2srOzAQDjxo3Do48+atN5QUFB+Pvf/45Zs2bBYDDg/fffx+233474+HjrMZJ05u+fr2/3ZXF/95N68b8mEZET2OqT1EYJmS5K61hDRKREeZUH8ULWK2hubbbp+GP1FViy/V94OOVejI04V+bZucZrr71mvX3PPffAx8f2LZXDhw/HnDlz8PLLL8NsNuOdd97BkiVLMGbMmG7H9vSz3u7/5ptvEBUVZfM8SHm07p4AEZFaydHqk8iVgnR+iB4WjNExgxE9LNhlWRWWjjXOENmxhohIaX47WWJXAMSiubUZL2S9gt9Olsg0M9dpbm5Gbm4ugPbMjunTp9s9xhVXXGG9/dVXX3XK7iDvxUwQIiIHsdUnkWOU1rFGbQxGE6prm2BsaYPO3wf60EB+dhB5EEmSsHbnersDIBbNrc1Ym/sGVlz2hKo/J3/++We0tLQAABISEuzKArEYM2YMIiMjUVFRgRMnTqC0tBSbN28GAKxatQrbt28HAOvPAMBkMsHPz6/X+4cOZVc/tWMQhIjIQWz1SeQ4JXWscSVHAxiSJGF/UTW2ZhVjR35lpwCsVqtBckIk0lJikRinV/Wih4iAX6p+7bUGiK2O1ZXjwInDOH/oaEGzcr3S0lLrbWcKk1qCIABQXFyMiy66CAAQGhpqPebcc7tvH+rvflIvBkGIiBzEVp9EzlFKxxq5ORvAKCyt7fM5MpslZOWVIyuvHDERwVigwueIiM74svAHIeN8Ufi9qoMgdXV11tvBwY5voRwyZIj1dkODc8XsyTPwGzcRkYPY6vMMpuc7x5ufPyV0rJGTswGMfQVVdmXLlFQ2YNHaTCzOSMKEMUzZJlIbg6kJuWU/CRkrt/QnGExNCPILFDKeqxmNRuttf39/h8fpuI2GNUEIYBCEPIw3LyTI9by91SfT853D5+8MJXSskYOzAYzC0lq7twsB7Vv1lq7PxbJ5qX1mhPBvJpHynDTUwiyZhYxllsw42VSr2iBIx+wPZzI46uvrexyTvBeDIKR6XEiQO3lrq0+m5zuHz1/vgnR+HrEQdzqAMTcFKzfuc7j2kLGlDS9u2IvVC6d3+tvHv5lEymZ0sBhqr+OZxI7nSh3rgJSVlTk8zpEjR6y3R41S1/ctkgeDIKRqXEiQu1lafdpSz6A39rT6VMKVW6bnO0cpz58SXkueSpIkrNyw16kAxvI3d+P4SYNT8zha2YD8ohokxusB8G8mkRrofAPEjucndjxXGj9+PHx9fdHa2oq9e/fCbDZDq9XaNUZVVZW1wKper0d0dLQcUyWVYRCEVEspCwlyP3cu5lzR6lNJV27lTs/3dO5+/pT0WvJk+4uqnQqMAnA6AGKxNbsYifF6/s0kUomwoFBoNVohW2J8NFqEBYY6Pyk3CQ4OxrRp0/DDDz+gvr4e33zzDS655BK7xvjwww+tty+++GL+bSMADIKQSrl7IUHup6TFnJytPpV05VbE1e2e0vO9hbufPyW9ljzdZ1lH3D0Fq5z9FcgvqubfTCKVCPILRNKI8dhRutfpsSZHjVdtPRCL22+/HT/80N4tZ82aNfjd735nc5HUkydP4q233gLQftFq9uzZss2T1MW+fCIiBRC1kGB1aPUqLK3FAyu24/GXs5GdV9GtO4tlMff4y9l4YMV2FJbWyj4nS6vPmAjbCm6NjAjGsnmpfV5h3VdQhUVrM22+omy5cruvoMqm4+0l4uq2JT3fG7nz+VPaa8mTGYwm5ORXuHsaVmazhJfe+4l/M4lU5NL4i4SMc1n874SM404XXnghLrqo/fk4dOgQnn32WZs+j1paWvDwww+jpqb9b+Z1112HMWPGyDpXUg8GQUh1uBDzbkpezFlafS69PwUpY4dDq+18td5Hq0HKuOFYen8KVi+c3m8GiDNXbuUI/Ii6ur01u1jIOGrjrudPia8lT1Zd2ySkbbZIFdWnnTqffzOJXOv8oaMRPSjSqTGiQ4bjvCFnC5qRey1fvhyRke3Px/vvv48///nP1uBGT44dO4Y77rgDmZmZAIC4uDgsWrTIJXMldeB2GFIdkQsJS7E4Ugc1bIPq2OqzutaA38rqUH+6BYMG+OOsESHQhwb1O4a7t030ROTV7Zz9FTAYTV5VhNNdz58SX0ueztHnWun4N5PIdTQaDeZNycCS7f9CswPdYgJ8AzAvaY7HfG6Hh4fjrbfewt13340jR47giy++QFZWFmbNmoXk5GRERESgra0NZWVl+PHHH/HFF1+gpaUFAHDOOefgv//9L1vjUicMgpCqcCHmvdSymBNRq0RktpOoRYvIq9tms4SaOqNXvffc9fwp8bXk6XT+Pu6egiz4N5PItc4Ki8HDKffihaxX7AqEBPgG4OGUe3FWWIyMs3O96OhofPTRR1i5ciU2btyIxsZGbNq0CZs2berx+KCgINx+++2YO3cuAgLU2yGH5MEgCKkKF2LeSw2LOVGFJ5WY7ST66nZTc6vQ8ZTOXc+fEl9Lnk4fGgitVqO4LTHO4t9MItcbG3Eunpn+F6zduR7H6vu/CBgdMhzzkuZ4XADEYsCAAXjiiSdw9913Y8uWLcjOzsbhw4dRW1sLjUYDvV6PMWPG4MILL8SVV16JkJAQd0+ZFIpBEFIVLsS8l9IXc6LaTyo120n01e3AAO/68+OO50+pryVPF6TzQ3JCJLLyyt09FeH4N5PI9c4Ki8GKy5/EgROH8cXh75Fb9lOn9rk+Gi0mR43HZfG/w3lDzvaYLTB9iYiIwJ/+9Cf86U9/cmqc5cuXY/ny5Q7fT+rlXd9CSfW4EPNOSl/MiaxVotRsJ5FXt320GoSH6JweR03c8fwp9bXkDdJSYoUEQYYODkTVqSaHz4/UB6Gi2uD0PCz4N5PIPTQaDc4fOhrnDx0Ng6kJJ5tqYTQ1Q+cXgLDAUNW3wSVyNXaHIVWxLCRE8MaFmFrJsZgTRXTLZqVmO1muboswNTHS6xbT7nj+lPpa8gaJcXqb22X3ZmREMB6bM9nh4L/O3wcP/XEC/2YSeZggv0BEDYpEfHgsogZFMgBC5AAGQUhVuBDzTkpezIlu2azkbKe0lFgh48yaNkrIOGrj6udPya8lT6fRaLAgfaJTAYz56RNxdvRgLM5Isnscnb8PFmckISFOz7+ZREREXTAIQqrDhZj3UfJiTmStEkDZ2U6irm4nxIULmpG6uPr5E/la0jILwG7xUaFOBTAsW+QmjBmKZfNSbX7tjIwIxrJ5qdZaQ/ybSURE1BmDIKQ6XIh5H6UGBuSqVaLUK7eirm57Q9G2nrj6+RP5WtL5+zATxAHOBjAs4qNCsWbhdCy9PwUpY4d3+zz00WqQMm44lt6fgtULp3fqOsW/mURERJ3xGw2pjmUhsWhtpkPbJLx9IaZGIrstiAwMyFV4UlRRRTmu3FqubttbCLbr1W1v5ernT9RryWBslbW9tCezBDDyi2qwNasYOfkVnT43fLQaTE2MxKxpo5AQF97r3yaNRoPEeD0S4/UwGE2oqTOiqbkVgQG+CA/R9fq5xr+ZREREnTEIQqrEhZj3UWJgQK5aJZYrt87UGpHzyq3l6vbKDXttmuPIiGDMT5/I993/ceXzlxinR1CALwwC6uDI1V7aGzgawOhNkM7PrnP4N5OIiOgMBkFItbgQ8y5KDAzIVatEDVduRV3d9lauev6amlvR1CKmELAc7aW9kb0BDFH4N5OIiKgdgyCkal0XEtn7yyF12J2g1QDJY4dzIeYBlBgYsNQqEbElpmutEjVcuRV9ddvbuOL5q65t6vSZ6IyOW7ZInRi8JCIiYhCEPIT0f//TQAMJHb/xawAJXX5GaqW0wIDctUrUdOXWXVe3PYVcz5+S20uTezB4SURE3o5BEFK1wtJarHx3L0qO97xANEsSsvLKkZVXjphhwVhwC1N71U5pgQG5a5Xwyi11ZTCaUF3bBGNLG3T+PtCHBva6cFVye2lyPwYviYjIG/HbDKnWvoIqPL9uJ1pMZpuOLznegEfX/Ign7pjSrf0gqYuSAgOuqFXCK7eey9aAhiRJ2F9Uja1ZxdiRX9np9a7VapCcEIm0lFgkxuk7vd7l3LJFREREpEYMgpAqFZbW4vnXd6Kl1bYAiEWLyYznX9+Jvz94ITNCVE4pgQFX1yrhlVv1szegUVha22fmk9ncIeMtIhgLOmQ+Ka29tD1ZLERErubj44PW1la0tbVBkiRmVxIJIEkS2travyP7+IjNUHUUgyCkOpIk4e9v7rI7AGLR0mrGP97cjVcWXcw/bh7C3YEBpdUqIeWyN6CRNi0W6z89YPPrqqSyAYvWZmJxRpI1483d7aUdzWLpCYMoRCQnf39/NDc3Q5IkGAwGDBgwwN1TIlI9g8EA6f+qtPv7+7t5Nu0YBCHVySusRmWNwakxKmpOY39hNcaePUTQrMjbKa1WCSnPvoIquwJlJZUN+M9H++1+HGNLG5auz8WyeamIjwp1a3tpZ7JYLEQGUYiI+jJo0CA0NLR/Xp08eRJBQUH8XCFygiRJOHnypPXfgwYNcuNszmAQhFRn45cFQsbZ8FUBgyAklJJqlZCyFJbW2p0p5AxjSxte3LAXqxdOd1t7aUeCPl2zWEQEUYiIbDVw4EBoNBpIkoTGxkaUlpYiLCyMwRAiO1myqU6ePInGxkYA7VvIBw4c6OaZtWMQhFTFYDQh/7caIWPlF9XAYDQxlZqEUkqtElIOSZKwcsNelwVALI5WNiC/qAaJ8XqXb9lyNOjTMYul4XSL00EUIiJ7aLVajBgxAmVlZdZASGNjIzQajWJqGRCpgaWujoVGo8GIESOg1WrdOKszGAQhVSmtcjydu+fxGjE6ZrDQMYks3F2rhJRhf1G1U1tRnLE1uxiJ8XoArtuy5WzQx9jShr+/uQu1Dc1OBVGYEUJEjggODu4UCAHaP9daW1vdPDMidbIEQIKDg909FSsGQUhVnK0F0tXxkwYGQYhIVp9lHXHbY+fsr+iU8eaKLVsigj7OfNZ33QpERGSv4OBgjB49Go2Njaivr0dLS4u1uwUR9c/Hxwf+/v4YNGgQBg4cqJgMEAsGQYiIiGRiMJqQk1/htsc3myXU1Bk7ZSTJvWXLnUEfi45bgYiIHKHVajFo0CDFFHIkInEYBCFVGRYWpOjxiLwVW5f2rLq2qVOmhTs0Nfeewi16y5a7gz4dddwKRERERGTBIAipSvQwsXvJooYqo0IxkRqxdWn/XF0MtSeBAa77U6+EoI9F161ARERERACDIKQyQTo/xEYOwpGKeqfHih0+iF+OiRzE1qW20fm7t5uAj1aD8BCdyx5PCUEfi562AhEREREpq0IJkQ0G6MTE7kSNQ+Rt9hVUYdHaTJuLX1pal+4rqJJ5ZsqjDw2EVuu+LJipiZEuDQK4O+jTVV9bgYiIiMg7MQhCqmIwmnDw6CkhYx08cgoGo0nIWETeorC0FkvX5zrcurSwtFaeiSlUkM4PyQmRbnv8WdNGufTx3B306cqVW4GIiIhIHRgEIVURud/ckipNRLaRJAkrN+x1eMuDpXWpJCmjZoSrpKXEuuVxR0YEIyEu3KWP6e6gT0eu3gpERERE6sAgCKmK6P3mTJUmst3+omqbt8D0xtK61JskxukREyG2qHN/dP4+mJ8+0S0Fad0V9OnK1VuBiIiISB0YBCFVEb3fnKnSRLb7LOuIkHG2ZhcLGac3BqMJJZX1+LXkFEoq692+7U2j0WBB+kSX1cvQ+ftgcUaS2wrRuiPo0xNXbwUiIiIideAKkFTFst9cxJYYpkoT2c5gNCEnv0LIWHK0LlV6u974qFAszkiyu56Kzt8HGVeeh8+yj9iUhTMyIhjz3dyJxxL0WbQ206HsvQA/LQYP0qGyxuDwHNyxFYiIiIjUgUEQUhXLfvOsvHKnx2KqNJHt5KjHI+r9p5Z2vRPGDMWyeal9zrWjjgGNtGmjkF9Ug61ZxcjJr+j038JHq8HUxEjMmjYKCXHhbgnydOVM0GdxRhKCB/g7HERx51YgIiIiUj4GQUh10lJihQRBmCpNZDul1uPZV1Bl10Lb0q53cUYSJowZKmQO9oiPCsWahdPtDmhoNBokxuuRGK+HwWhCTZ0RTc2tCAzwRXiITpEBXWeCPgCcCqK4MxOGiIiIlI1BEFKdhLPC4eerhanV7PAYfr5anH9WmMBZEXk2JdbjcbZd77J5qW5ZLDsb0AjS+Sky6NETR4M+gPNBFCIiIqKeMAhCqpP/W41TARAAMLWa8ctvJ5EYrxc0KyLPprR6PKLa9a5eON2t2ybUFNBwlDNBH2eCKEREREQ9YRAEwPfff4977rnHpmNTU1Px2muvdfu52WzGxx9/jM2bN6OgoAAGgwFDhgzBxIkTcfPNN2Py5Mn9ji1iDG8gskMFgyBEtlFaPR6R7Xr5OeA6jgR91LgViIiIiJSLQRAAhw4dcur8hoYGzJ07F7m5uZ1+Xl5ejvLycmzduhUZGRl47LHHZB3DGyi9QwWRJ1NSPR4GQ72TN2TOEBERkbwYBAFw4MABAIBer8f//ve/Po8dOHBgp39LkoT58+dbgxepqalIT0+HXq/HwYMH8eqrr6KsrAzr1q1DWFhYjxknIsbwFkruUEHk6RLj9IiJCHYqA0NE61IGQ4mIiIjIUQyCADh48CAA4LzzzsO5555r17lbtmxBZmYmAOC6667DsmXLrPeNHz8eV1xxBWbPno3CwkKsWbMGV199NSIiIoSP4S2U2qGCyBtoNBosSJ/o9talDIYSKY/BaEJ1bROMLW3Q+ftAHxrI9xURESmS1t0TcLfGxkaUlJQAaA+C2GvdunUA2jNEHn300W73h4aG4plnngEANDc3480335RlDG+hxA4VRN4kPioUf5w52qFz/zhztJDOHQyGEimDJEnIKzyBZW/kIv3JzzHvhe3466ofMO+F7Uh/8nMsf2MX8gpPQJLEBC2JiIhE8PogyKFDh6x/nO3NAjl27Jh1K8306dMRGhra43GTJk3CqFHte+C3bdsmfAxvYulQIYKIDhVE3qawtBbvff2rQ+e+9/WvKCytdXoOooOhRGS/wtJaPLBiOx5/ORvZeRXdsrPMZglZeeV4/OVsPLBiu5D3PhERkQheHwSxBCAA4Pzzz7fr3D179lhvT506tc9jk5KSAABlZWXWzBNRY3gTS4cKEUR0qCDyJqLa0jp7VVhkMBQAFr70A69YE9lhX0EVFq3NtLk+UEllAxatzcS+giqZZ0ZERNQ/rw+CWOqBBAcHo62tDcuWLcOsWbMwduxYTJw4Eddeey3WrFmD+vr6bucWFhZab8fGxvb5ONHR0dbbhw8fFjqGt0lLiRUyjogOFUTeRGRbWmeIDIYCgCRB8VesDUYTSirr8WvJKZRU1sNgNLl7SuSlCktrsXR9rt3BUGNLG5auz1Xk+4uIiLyL1xdEsGSCmEwmXHnllTCZznyxbG5uxoEDB3DgwAG8/fbbWL16NSZPnmy9v7Ky0np7+PDhfT5OZOSZL+wdzxMxhq0s7XYdUVBQ4NB5ckiM0yMiPAiVNQaHx4gID3K6QwWRt1FSW1pR7Xq7slyxXpyRhAljhgof3x6SJGF/UTW2ZhVjR35lp+0GWq0GyQmRSEuJRWKc3ulis0S2EJUNtnrhdL5miYjIbbw6CNLS0oKioiIAgNFoRHBwMDIyMjBlyhQMGjQIxcXF+PDDD5Gbm4tTp07hrrvuwrvvvouEhAQAQF1dnXWsAQMG9PlYQUFB1tsNDWeupIoYw1Yffvgh1qxZY/d5nkgDfvkisofS2tKKaNfbG8sV62XzUoUUcnVEYWktVm7Y2+vvZ6m3kJVXjpiIYCxIn+i2uZL3EJkN5kwglJ1oiIjIGV4dBDl8+LA18yM2NhavvfYaoqKirPePGzcO11xzDf75z3/iv//9L5qbm/HII4/g008/hVarRUtLi/VYna7vApsd7+94nogxvM3+omqnskAAoKLmtNNfwoi8idLa0jrbrrc/7rxiva+gyq7tBkrKXiHP5s5sMGZGERGRKF5dE+Scc87BV199hXXr1nULgHT0l7/8BRMmTAAAFBUV4bvvvgMA+Pic6VDQ3x/cjsX2tNozT7uIMbyNyC9hRGQbJbaljY8KxeKMJNm6xYioX2Iv1lsgpZIjG8xW7ERDREQieXUmiI+PD2JiYhATE9PncRqNBjfddBP27dsHAMjOzsaMGTM6bU8xGo3w9/fvdYzm5mbr7Y7HiRjDVtdffz2Sk5PtPg9orwny7LPPOnSuSEpLySfyFqIDDYEBYv78TBgzFMvmpfa5dcQZIuqX2Ir1FkjJ3JUNxswoIiISzauDIPY499xzrbfLysoAdK7h0dTUhEGDBvV6vsFwZvtGSEiI9baIMWw1fPjwfouvKp3SUvKJvIWlLa2I95+PVoPwkL63/9kjPioUaxZOR35RDbZmFSMnv/uVYke5MliqlHoLRD1xRzaYs5lR7qzrQ0REyuW9eyrs1FM9jhEjRlh/VlHRd3ZCx/uHDRtmvS1iDG+ixJR8Im8gsi3t1MRI4UEFjUaDxHg9HpszGf94IFXYuJZgqStwqx8pmauzwURlRnXcSkxERAR4eRDkwIED+PLLL7FhwwY0NTX1eWxNzZl94Xp9+xW2s88+2/qzkpKSPs8/duyY9XZ8fLz1togxvIlSU/KJvEFaSqyQcWZNGyVknN6I3griimCpO+stENnCkg0mgi3ZYCIzo4iIiDry6iDIq6++igcffBBPP/00fvrppz6P3bNnj/X22LFjAQDjx4+3ftnevXt3n+fn5uYCACIjIzsVYBUxhjdx9ZcwIjrD0pbWGSMjgpEQFy5oRj1TY7BUjq1+SmEwmlBSWY9fS06hpLKeARqVcnU2GDOjiIhILl4dBJk6dar19ubNm3s9rqmpCRs3bgQA+Pn54dJLLwXQHowYP348AOCLL75AY2Njj+fv3r0bxcXtf4Qvu+yyTveJGMObKD0ln8iTWdrSOhpk0Pn7YH76RNmLdqoxWCp6q99Pv1YJHc9ekiQhr/AElr2Ri/QnP8e8F7bjr6t+wLwXtiP9yc+x/I1dyCs8wa0KKuOqbDBmRhERkZy8OgiSlpaG0NBQAMAnn3yCr7/+utsxJpMJjz76qLUY6i233IIhQ4ZY77/tttsAALW1tViyZAnMZnOn8+vq6rBkyRIA7QGUW2+9tdtjiBjDm6glJZ/IEznallbn74PFGUkuKVKoxmCp6OyV9VsPuK1NKNuZei5XZYMpKTOKmUxERJ7HqwsiBAcHY8mSJfjLX/4Cs9mMhx56CDfeeCMuvfRSDBw4EL/++ivefPNN/PrrrwDat8EsWLCg0xizZs3CRx99hMzMTHz66aeorKzE7bffjmHDhqGgoACvvPKKNYDy4IMPIjo6uts8RIzhTSxfwpzZK+yKlHwiT2VvW9qREcGYnz7RpV0a0lJikZVX7vQ4rgqWiuy+AwAtJrNb2uWynalns2SDLVqb6VD2kq3ZYO4ugi5JEvYXVWNrVjF25Fd2el9qtRokJ0QiLSUWiXF6tqMmIlIhrw6CAO3ZIC0tLXj66aet214sW186Sk1NxcqVKxEYGNjtvlWrVuG+++7Drl27sHv37h5re2RkZOCee+7pdR4ixvAWrvoSRkS9668trY9Wg6mJkZg1bRQS4sJd/n5TW7DUkr0iInBjYWu7XIPRhOraJhhb2qDz94E+NNCh7Be2M/UOlmwwe/9b25MN5s66PoWltX0GeC2ZTFl55YiJCMYCFwd4iYjIeV4fBAGAa665BlOmTME777yDzMxMlJSUoKWlBXq9HmPHjsUf/vAHXHzxxb2eP3DgQLz55pvYvHkzPvnkExw6dAgNDQ0YPHgwJkyYgNmzZ3eqPyLXGN7EFV/CSD1ELeLIPpa2tInxehiMJtTUGdHU3IrAAF+Eh+jc+t9AjcFSUdkrHW3NLu4xCCL6Sreodqauzlwhx8idDSYyM8qeuj7MZCIi8g4aiVXJyAa7d+/G7Nmzrf9+5513MGnSJDfOqF1/V2w6ckdKPsmH6cpki30FVXj+9Z1oaTX3f/D/8ffV4ok7p8i+qOkavAsP0eGRNZlOtwXtSKvVYMNzV3QKSNnzuWnrle68whN4/OVsZ6eLpfen9Ju5QsohSZJs2WDL39glJCiYMm44Hrt9cr/HFZbWOhU0ZSYTEZE85FiHMhOEVE3pKfkkD6Yrk13sfdvL+DHRX/AuMS4c5SdOo7XN9qBNXyxFIS1BELmudItsZ8ogiHrImQ3myro+zGQiIvIuDIKQ6ik5JZ/EY7oy2cpSo6LFZF9AocVklqVGhS3Bu58PVwt7PAtLUUi5anbI0c6Un9vqE6TzE/rfzZV1ffYXVTudgWVrDR4iInI/r26RS54nSOeH6GHBGB0zGNHDgvlF2sM4u4hjK07vIerKrqgdo/sKqrBorditLrYKDPCV9flQUjtT8hyWuj6OFkm1p66PyEwmIiJSPgZBiEgVlLaoJWUTeWXXWY4G70SwFIWU8/lwdztT8lyWIuj2BkLsKYIuRyYTEREpG4MgRKQKSlrUkvIp5cqus8E7Z01NjESQzk/W58Od7UzJ81k60cREBNt0/MiIYCybl2rz9kdmMhEReR9+0yAiVWDhRbKVkmpUiAjeOWPWtFGyPx/60EAhYwPtNWltbWdK3kPOIujMZCIi8j4MghCR4ilpUUvKJ8eVXUdfL6KCd46wFIU8drxBMc9Hf7hZjXojVxF0ZjIREXkfflITkeIpaVFLyqeUK7sig3f26lgUUu7no7q2Sej4fH9Sf0R2otGHBkKr1Qj5G2OpwUNERMrGmiBEpHhKWdSSOijlyq7I4J09uhaFlPv54PuT1CxI54fkhEghY1lq8BARkbIxCEJEiqeURS2pg+XKrgjOXNl1RzHUnopCyv188P1JapeWEitknFnTRgkZh4iI5MUgCBEpXpBO7KIoMEDsoo2URSlXdkUHB+bfPAEpY4d3C2j4aDVIGTccS+9PweqF07u1BZX7+VBK0InIUYlxepu7z/TGUoOHiIiUj5dbiEjxDEax6fFNze5pV0quk5YSi6y8cqfHcebKruhaA8mJkbh4coxDRSHlfD4sQRYR43M7AbmDRqPBgvSJWLQ206EMro41eIiISPmYCUJEiseaA2QvJVzZlSsDI0jnh+hhwRgdMxjRw4JtChrI/XxwOwGpXXxUKBZnJNmdwdW1Bg8RESkfgyDkUQxGE0oq6/FrySmUVNbDYDS5e0okAGsOkL0sV3YD/Bz7Myfqyq5SggOW58PR91J/z4cSgk5EzpowZiiWzUu1+bXcUw0eIiJSPq4ESPUkScL+ompszSrGjvzKTqnnWq0GyQmRSEuJRWKcnqmqKqUPDYRWA4hotKF1Yc0Bg9GE6tomGFvaoPP3gT40kKn+LtDxM8HUarb7fJFXdi3BgZLKBofHEBUcsFzpXro+167sKlueD7m2E/A9RK4WHxWKNQunI7+oBluzipGTX9Hpe4WPVoOpiZGYNW0UEuLC+b2CiEiFGAQhVSssrcXKDXt7XWCYzRKy8sqRlVeOmIhgLEifyJRVFQrS+WHwIB1q6oxOjzU4OEDWRRSDcu7V32dCf0ZGBGO+wM8JpdUasFzptvU5suf5EBVkUct7iAEaz6XRaJAYr0divN6hGjxERKRsDIKQau0rqLLry3ZJZQMWrc3E4owkpq6qjMFowsl65wMgAHCy3giD0STLl1gG5dzL3s8EC60GSB47XLYru3JmYDg6H7mudDsbZFH6e0gtARpbMZDTvyCdH58TIiIPwyAIqVJhaa1Dix1jSxuWrs/FsnmpXHyqSHVtEyQBW2EAQJKAmjqj8C+1DMq5l6OfCQDg5+eDG2acLetngpwZGI6Q80q3o0EWpb+HlB6gsZWnBXKIiIjsxSAIqY4kSVi5Ya/DHUOMLW14ccNerF44nV/wVELp3WEYlHMvZz8Tml30maDUWgNyXOm2N8ii9PeQ0gM0tvKUQA4REZEzGAQh1dlfVO1UkUEAOFrZgPyiGiTG6wXNiuSk5O4wDMq5n5o+E7yx1kB/QRalv4eUHqCxlacEcoiIiJzFFrmkOp9lHREyztbsYiHjkPz0oYHQasUsbnwEd4cRuQAnx6j1MyFI54foYcEYHTMY0cOCPTIAYgslv4dEBWgkUfv5HORsIKewtFaeiREREbkBgyCkKgajCTn5FULGytlfAYPRJGQskleQzg/JCZFCxpqaGCl0sanWBbin4GeC+in5PaTkAI2tPCWQQ0REJAqDIKQq1bVNnfbQO8NsloS0XCXXSEuJFTLOrGmjhIwDcAGuBPxMUDelv4eUHKCxlScEcoiIiERiEIRURekFMkk+iXF6xEQEOzXGyIhgJMSFC5oRF+BKwM8EdVPye0jpARpbeUIgh4iISCQGQUhVlFwgk+Sl0WiwIH2iw68Bnb8P5qdPFFo4kQtw9+Nngrop+T2k5ACNrTwlkENERCQSgyCkKkoukEnyi48KxeKMJLsXvjp/HyzOSBLeoYELcPsZjCaUVNbj15JTKKmsd3pRxc8EdVPye0jJARpbeUIgh4iISDS3fuNuampCeXk5Ghsb0dLSgoCAAAwcOBBRUVHw9/d359RIoSwFMrPyyp0eS3SBTHKNCWOGYtm8VKzcsNemfe4jI4IxP32iLC0qLQtwEYsMT16AS5KE/UXV2JpVjB35lZ2eL61Wg+SESKSlxCIxTm93pg4/E9QtSOcLjQYQUXNT9HtIyQEaW3lCIIeIiEg0l/5FLi8vx7fffoudO3fi559/xokTJ3o8TqPRICIiAhMmTMCUKVMwY8YM6PV6V06VFCwtJVbIgkdkgUxyrfioUKxZOB35RTXYmlWMnPyKTgtrH60GUxMjMWvaKCTEhQvdAtMRF+D9Kyyt7TNgZTZLyMorR1ZeOWIigrHAgYAVPxPUpWtQTFTTEdHvIU8IcnpCIIeIiEg02f+aSZKEbdu2YcOGDdi1a1e3+3o7p6KiAhUVFfjss8/w7LPPIjk5GbfccgumT58u95RJ4SwFMp2pdi+6QCa5nkajQWK8HonxehiMJtTUGdHU3IrAAF+Eh+hcFlDgArx3+wqqsHR9rs1Xo0sqG7BobSYWZyRhwpihNj+OnJ8JBqMJ1bVNMLa0QefvA31ooEcGq1ylv6CYM0S/hzwhyOkJgRwiIiLRZA2CfPLJJ1i7di1KSkoAdA96BAcHIyQkBMHBwQgKCkJzczMMBgMqKythMBisx7W2tiIzMxOZmZkYNWoUHnjgAaSlpck5dVIwS4HMRWszHUr1laNAJrmf5fOlt+CqXBiU61lhaa1dARALY0sblq7PxbJ5qTZnhIj+TJBz+443szcoZg+53kNqD3J6QiCHiIhINFmCIL/88guefvpp5OfnWxckAQEBmDRpEpKTk3Huuedi9OjRGDJkSK9jnDx5EgcOHEBeXh6ysrLw888/o7W1Fb/99hv++te/4n//+x+efvppjB07Vo5fgRTOUiDz+dd3oqXVbPN5/r5aWQpkkuspZaHKoFx3kiRh5Ya9Di92jS1teHHDXqxeON3m58XymWDvIrtr0VxXbN/xRo4GxWwh53vIE4Kcag/kEBERiSY0CNLa2opVq1bh9ddfR1tbGzQaDZKSknDjjTfi0ksvRUBAgM1jhYWFITU1FampqZg7dy7q6urw2Wef4eOPP0ZeXh4OHDiAm2++GbfeeisWLlzIQqreyt7vvJ6zzvRqSluoilqAe4r9RdVOb3c4WtmA/KIaJMbbXg/K2aK5rtq+422cDYr1Re73kCcEOT0hkENERCSS0Ba5f/zjH/G///0PZrMZaWlp2LJlC958801cddVVdgVAehISEoL09HS89957eO+993DppZdCkiS89dZbuOmmmwT9BqQWlquKLSbbs0AAoMVkxtL1uSgsrZVnYiS7fQVVWLQ20+Yv9JaF6r6CKlnnZVmAxwwLtun4kRHBWDYv1SMXz59lHREyztbsYrvPsRTNXXp/ClLGDu/WPtdHq0HKuOFYen8KVi+c3ikDxJntO678TBHdZlhuIoJiPXHVe0hprbntZQnkOFokVQmBHCIiIpGEZoIcOHAASUlJeOyxx3DeeeeJHLqTsWPH4qWXXsKhQ4fwj3/8Azk5ObI9FimPO1LtSRlcWWfCURJsq0lidrB2idILdRqMJuTkVwgZK2d/BQxGk92/n71Fc9XwmaKU7V+OEBUUA1zX+akrJbXmdgSz1YiIiM4QGgR56aWXcOmll4ocsk/nnHMOXn/9dXz99dcue0xyP3el2pN7KX2hau9WimPHG23eSqGmBXB1bZOQThRA+7ammjqjU0GeIJ1fv+cr/TNFzu1fcgfVRAbFtBoN/vf4TOhDg4SMZy+ltOZ2lNoDOURERKIIDYK4MgDS0cyZM93yuOQeW7PsT5HvbRwGQdRDyQtVOTNUlFb/pD+i6z40NbcKHa8nIrfviH5tyVGnxJVBNaFBMUlCU7P4uiL2UEprbkepPZBDREQkgqwtcolEMxhN2LFfVKp9uUOp9uQeSl2oypmhosZCnY7WHehNYIC8f6aUsH2nN3IE11wdVFNjUMxWtmQZKZHaAzlERETOEloYlUhu1bVNEHRREWYJqKkzihmMZCXHQlUUkRkqHampUGdH+tDAbsVIHeWj1SA8RCdkrN7IsX1HBFHBNalD7Rl3FBVWW1DM2wTp/BA9LBijYwYjelgwAyBEROQV3BYEaWxsxPHjx1FeXm7z/4lqG5qFjneqnkEQNVDqQhWQpxOKHAtgVwnS+SE5IVLIWFMTI2VflCk1U0F0cM1dQTW1BcWIiIjI87n0ksru3bvx3//+F3v37sXp06ftOlej0eDAgQMyzYzUQnQqtNHk3v3lZBulLlQNRhOy94sJ0GbnndmepeT6J7ZIS4lFVp7zz8usaaMEzKZvSs1UEBlcS4gLd1tRYUtQTMTrwRVBMSIiIvJ8LssEefvtt3H77bfjxx9/RGNjIyRJsvv/RKJToXV+YhdAJA+lLlSra5sg6qNJ6rA9S47sEldKjNMjJiLYqTFGRgQjIS5c0Ix6p8RMBdHbv3YdPC7Lli1bpaXEOvXYFq4IihEREZHnc0kmSEFBAZYvXw6z2QygPasjOjoaer0ePj5chJLtQoMDhI43eBBTq9XAslAVsSVGZEq9HBkqSi7UaSuNRoMF6ROxaG2mQ8+Rzt8H89MnuqQzhRIzFURv//o08zchYzlaVNgSFHMmEOOqoBgRERF5PpcEQd599120trZCo9EgNTUVTz/9NEaMGOGKhyYPow8NhEYDIVfftRpwf7lKKHGhCkCWDDU56p+4YwtBfFQoFmck2V2HQufvg8UZSS5t86u07Tuig2s//3pCyDiOBtXUFBQjIiIiz+eS7TA7duwAAAwfPhxr165lAIQcpraiiySOElPqjS2Ca9Q0mxRb/8QRE8YMxbJ5qTZvjRkZEYxl81Jd3t5Xadt3RG//EtZRy4miwpagmL2/mzuCYkREROTZXBIEqaqqgkajwaWXXgp/f39XPCR5sFmpYhaxV6acJWQccg2lLVQBoK6xRdhYAFB32qTY+ieOio8KxZqF07H0/hSkjB3erf6Gj1aDlHHDsfT+FKxeON0ti11LpoKjz73oTAWRdUoEDWPlTFDNVUExg9GEksp6/FpyCiWV9UJbYhMREZH6ueTbsZ+fH4xGI0JCQlzxcOThuL/cO3lLSr1S6584Q6PRIDFej8R4PQxGE2rqjGhqbkVggC/CQ3SKyMiKjwrFH2eOxpufHbT73D/OHC00eCNy+9e40UOwr0DMdhjA+aCaJSiWX1SDrVnFyMmv6PRa99FqMDUxErOmjUJCXLjN71dJkrC/qBpbs4qxI7+y05harQbJCZFIS4lFYpxe8Z8BREREJC+XBEFiY2Oxf/9+HDt2zBUPRx5Oo9Hghhln41/v7nV4jOtnnM0vwiqktDoTw8KChI+n1PonogTp/BQ3JwAoLK3Fe1//6tC57339KyaMGSr09SWqTslVqWfh58PVigqqiQ6KFZbWYuWGvb0Gxs1mCVl55cjKK0dMRDAWpE/k9hoiIiIv5pLtMDNnzoQkSfjqq69gMBhc8ZDkwSRJwrtfHHJqjHe/OMS2yyqlpDoT0cOc257TkQZA1NCBAJRZ/8STSZKElRv2OlyPxdjShhc37BX6mSJq+9ekc4cpuo5SkM4P0cOCMTpmMKKHBds9/r6CKixam2lzZmBJZQMWrc3EvoIqR6ZLREREHsAlQZBbb70VQ4cORUNDAx5//HEuPskpeYUnUFnjXDCtssaA/YXVgmZErqaUOhNBOj+cf5aYbVXnx4VbF4BKrH/iyfYXVTu1vQ4AjlY2IL+oRtCMxNYp8dSgWmFprd1ZYUB70Grp+lwUltbKMzEiIiJSNJdshwkKCsK///1vzJkzB9u2bUNJSQnmzJmDiRMnIiwsDEFBYlPKybNt+NKxlPVu43xVgLFnDxEyFrmeUupMpF86Gk/8J8f5cS4ZY73NLV+u9VnWESHjbM0uRmK8XshYgLjtX55QR8lgNKG6tgnGljbo/H0QHqITkr2zeuF0vk+IiIi8jNAgyLnnntvvMZIk4cCBA3j00UftGluj0eDAgQOOTo08hMFowi+/ibnaml9UA4PRpMj6BGQfd9aZGBs/BBHhQU5lJ0WEB3VaPEuShA++PezUvD789jB+PzGKC7x+GIwm5ORXCBkrZ3+F8M8Uy/avvmpedDQyIhjzu9S8UGtR4b6KnWo0gLNJpZbsHZGBKyIiIlI+odthJEnq8/8ArF+i+ju2t/PJux077lzKelelVY1CxyPvo9Fo8Ojtk+Hn69jHqZ+vFo/ePrnTAlOJ2zM8VXVtk5CioUB7Ac6aOqOQsToSsf3LklVi7/YauYoK96ewtBYPrNiOx1/ORnZeRbf/RqK+EmzNLhYzEBEREamG0EyQ4cOHixyOqJvjJ8UW1j1+0oDRMYOFjkneJz4qFE/eOQXPv74TLa1mm8/z99XiiTundFtgKnV7hidydDtFb5qaW4WOZyFi+5eIrBJX2FdQ5VCtD0fIkb1DREREyiY0CPLtt9+KHI6ISDUmjBmKvz94If717h4cO95/hlHMsIFYcMsF3RaYSt+e4WkcLTzam8AA+UttObP9y5JVkl9Ug61ZxcjJ75xl4aPVYGpiJGZNG4WEuHCXb4FxtNipoyzZO3yPEBEReQ+XFEYlEiUiXGwR3WFhLMpL4lgWmJ/8+Bs2f1/U49aI8BAdrvldHK6+8Cxotd230MixPYMLvN7pQwOh1WqEPOc+Wg3CQ3QCZiUvpRQV7srZVsWOkit7h4iIiJRJaBDkyy+/RHJyMoKDnWvtSNSbqKHiXlsaAFFDBwobj6iwtLbfrQY1dUa89skv+Cq3BAt62Gqglu0ZniJI54fkhEhk5ZU7PdbUxEjFBpy6dlfRhwZaM0qUMmcRtXAc4YrsHSIiIlIOoX/5H3roIfj4+CAhIQEpKSlISUnB+PHj4eMjNt3YVerr6zFr1ixUVVXhqquuwooVK3o91mw24+OPP8bmzZtRUFAAg8GAIUOGYOLEibj55psxefLkfh9PxBieLkjnh4SzwpEvoEPM+XHhivnyT+pnbx2DksoGLFqbicUZSZgwZqj152rcnqF2aSmxQoIgs6aNEjAbcfrqrqLVapCcEIkZk6MxbHAgmk3mTsERdxBVC8ceasneISIiInGEfzs2m83Iy8tDXl4eXn75ZQwYMABTpkzBtGnTkJqaipEjR4p+SNk899xzqKqq6ve4hoYGzJ07F7m5uZ1+Xl5ejvLycmzduhUZGRl47LHHZB3DW9x86Rg88Z9sp8dJv2SMgNkQOV7HwNjShqXrc7FsXqo1I0St2zN6yzRwN1vmlRinR0xEsFNZCCMjgpEQF+7sdIXpLyvJbJaQlVfeLfhjCY6kpcQiMU7vspogImvh2ENJ2TtKfQ8RERF5GqFBkPj4eBQVFXVqZ9vY2Ihvv/3WWjR1+PDhSElJQWpqqqK3znz99df45JNP+j1OkiTMnz/fGrxITU1Feno69Ho9Dh48iFdffRVlZWVYt24dwsLCcM8998gyhjcZG69HRHgQKmsc7xQTGT6AXTM8iDsXD87WMTC2tOHFDXuxeuF0aDQaVW3PsCXTwNWLaUfmpdFosCB9IhatzXTov6PO3wfz0ye6vIhob5zprtIxOBITEdzjli05iKyFYw93Z+8o9T1ERETkyYQGQT799FPU1tZi9+7d2L17N3Jzc1FQUIC2tjNfxMrLy/H+++/j/fffh1ar7bR1ZsKECT0WCnS1kydPYsmSJTYdu2XLFmRmZgIArrvuOixbtsx63/jx43HFFVdg9uzZKCwsxJo1a3D11VcjIiJC+BjeRKPR4JbLzsG/3t3r8Bjpl43hF0qVU8riQUQdg6OVDcgvqrEG5tSwPcOeTANXLqYdnVd8VCgWZyTZHTzQ+ftgcUaSy9vI9kZkd5XetmyJ0jF4WVlzWvj4/XF39o5S30NERESeTnjEITQ0FDNnzsRjjz2Gjz76CDt37sR///tf/OlPf7LWB5EkCZIkoa2tzbpt5tZbb0VSUhLmzZuHd999F0ePHhU9NZs988wzqK6uRlhYWL/Hrlu3DgAwcOBAPProo93uDw0NxTPPPAMAaG5uxptvvinLGN5EkiR88O1hp8b48NvDnTKWSF0KS2vxwIrtePzlbGTnVXS7gmxZPDz+cjYeWLEdhaW1ss1FVB2DrdnF1tuW7RnOkHOBt6+gCovWZtoc/LEspvcV9L+90J3zmjBmKJbNS7X5uR8ZEYxl81JlCRA4Qo7uKpYtW6LeQ5IkIa/wBJa9kYv0Jz/HvBe246+rfsALb+8RMr6t3J29o9T3EBERkTeQPe1i4MCBuOiii/DXv/4VGzduxO7du7Fu3TrMmzcPSUlJCAgIsAZFLFtnnnvuOVx++eW4+OKL8dRTT+HLL79EQ4NrKsZ/9tln2LZtG7RaLZ544ok+jz127BgOHDgAAJg+fTpCQ0N7PG7SpEkYNar9iuy2bduEj+FtRF55J/VR0uJBZB2DnP0VMBhNAGDdnuFokVQ5F3jO1j+RKyAlal6WNsdL709Bytjh0Go7P4c+Wg1Sxg3H0vtTsHrhdEVdmZeru4ply5azgeP+gpeu4u7sHaW+h4iIiLyFy9sG6HQ6JCcnIzk5GQBgMpmQl5eHPXv2YNeuXdi3bx8aGxsBAGVlZdatMz4+PsjPz5d1btXV1Xj22WcBABkZGRg3blyfx+/Zc+bK1dSpU/s8NikpCcXFxSgrK0NJSQliYmKEjeFtRF55Z10QdRFZgFQEkXUMzGYJNXVGaw0PJW7PEF3/ROi83hU3L41Gg8R4PRLj9TAYTaipM6KpuRWBAb4ID9EptlilnN1Vum7ZspczdUpEGhkRjPlu3Fai1PcQERGRN3F7AQ4/Pz9ccMEFuOeee/Dqq69i165d+Pjjj3HHHXdYt6NYts7IbcmSJTh16hRGjRqF+fPn93t8YWGh9XZsbGyfx0ZHR1tvHz58ZiuHiDG8iVxX3kn5RC0eRG6DEr2ga2pu7fRvpW3PUGoW1rYdR1ByXJ55Ben8ED0sGKNjBiN6WLBiAyDVtQZk73e+jkxfOm7ZsofIOiW26JK8o6jsHaW+h4iIiLyJyzNBelJTU4OdO3di165dOHjwIAoKCmA0Gl06h82bN+Prr7+GVqvFsmXLEBAQ0O85lZWV1tvDhw/v89jIyMgezxMxhq0s7XYdUVBQ4NB5osl55Z2UTY4CpM5ydLtKbwIDun8kW7Zn5BfVYGtWMXLyO28j8NFqMDUxErOmjUJCXLisV4eVmIW1r6AK//kwT8hYassO61QceH8l5C5zlJ1XjrzDJxAaHGBzByY56pT0ZWREMP7+QCpO1jcrMntHie8hIiIib+OWIMjp06eRk5OD7Oxs7Ny5E7/99lun+y1XajUaDcaMGWNtqSuX48eP429/+xuA9m0wEyZMsOm8uro66+0BAwb0eWxQUJD1dsf6JiLGsNWHH36INWvW2H2eksh95Z2US4mLB31ooJBxAEADIDxE1/N9CtieIUcWlrPzLiytxd/W7YSo0hKi5uUK/XUWkYMkAY//JxuA7R2Y5KpT0hNLLZwBgf4YEOjvkse0hxLfQ0RERN7IZUGQQ4cO4YcffsCPP/6Iffv2ddre0jE9Xa/XY9q0adbAR3i4/O3rnnjiCdTX1yM2NhZ//vOfbT6vpaXFelun63nx0tP9Hc8TMYY3ccWVd1Ieb1g82LqOD9L5uWXuSsvCsmQYNJvMQuYkal6uoIT6Gra2b5WzTklH7i52agulvYeIiIi8lWwrwPr6emRmZuLHH39EZmYmqqurrfd1DHr4+/tj4sSJSElJwYUXXohzzjlHrin16P3338cPP/xg3QbTXyCiIx+fMwvy/lLQO/7OWu2ZUiwixvAm+tBAaLUaIV8kfbSaXq+8k7IodfFQXdskYEZnKHlRo7QsLLkyDJSeHebq+hq2sHRgWpyRhAljhsJgNKG6tgm1Dc3I2S8meNkXdxc7tZXS3kNERETeSmgQJC8vDz/88AMyMzOxf/9+mM3tV+i6FiI866yzkJqaipSUFEyZMsWuwINI5eXlWL58OQBgzpw5mDhxol3nd9yeYjQa4e/fe/ptc3Oz9XbH40SMYavrr7/e2pXHXgUFBdbOOe4UpPNDckIksvKcLwA4NTFSsQtO6kypiwelzksOSsvCkivDQMnZYa6ur2EPY0sbnn99J86JDUP+bzWyt791ZS0cUZT2HiIiIvJWQv+C/vGPf7R+EekY+AgJCUFycjJSU1ORmpqKiIgIkQ/rEEmS8Pjjj6OxsRGxsbE2dYPpqmMNj6amJgwaNKjXYw0Gg/V2SEiI0DFsNXz48H6Lr6pBWkqskCDIrGmjBMyGXEGpiwelzksOSsrCErk9qiOlZ4e5sr6GI1pazcgrrO7/QAc9ctskDAsLUlyxU1sp6T1ERETkzWT7xj158mSkpKRg2rRpSExMVNxVmk2bNiE7u73A2+23347i4u6t/6qqqqy36+vrcfDgQQDtdUuGDBmCESNGWO+vqKjAsGHDen28ioozX9g7HidiDG+TGKdHTESwU4uBkRHBSIiTv94MiaHUxYNS5yUHJWVhidwe1ZHSs8NcVV9DqWIjByF6mG3topVISe8hIiIibyZbEKSgoABBQUEICAiATqfD6NGj5Xooh/z000/W27Zs8/j+++/x/fffAwAeeOABPPjggzj77LOt95eUlGD8+PG9nn/s2DHr7fj4eOttEWN4G41GgwXpE/HI6h9harW/KKKfrxbz0ycqLjBHvVPq4kGp85KLqCysSecMxa8lp6Dz97G51WpHcm0HUXJ2mFzZL2qh9CChrZjJSERE5H5CgyDR0dHWhXp9fT1++OEH/PDDDwDasycs22GmTZuGwYMHi3xotxg/fjw0Gg0kScLu3btx9dVX93psbm4uACAyMhJRUVFCx/BWjoYwGPpQJ6UuHpQ6LzmIyMICgFWbfrLetrXVakeityEBys8Okyv7RS3UECS0BTMZiYiI3E9oi5GvvvoKX331FZ588kn8/ve/h06ngyRJkCQJJ06cwObNm7Fw4UKkpKTghhtuwMqVK7F79+5O7XJdZfny5SgoKOjz/9988431+Kuuusr68wcffBBAezDCkrnxxRdfoLGxscfH2r17t3W7zWWXXdbpPhFjeBtLccAWB7JAgPZ96y9u2NutYC8pm2Xx4Aw5Fg9KnZccLFlYIoMQllarj7+cjQdWbEdhaW2/51i2IYkS4O+j+OwwJRZDdSU1BAlt4ex7SPd/r9Wm5laUVNbj15JTKKmsh8FoEjxTIiIizyW8z2p0dDRmz56N//znP8jNzcW6detw55134uyzz7YGRMxmM3755Rf897//xW233YakpCTMmzcPGzZs6LTlQw1uu+02AEBtbS2WLFli7YhjUVdXhyVLlgAA/Pz8cOutt8oyhjcRURzwaGUD8otqBM2IXMGyePDzdexjS65tUJZ5+Ts4L3+Vbc+KjwrF4owkWbIxLK1W9xVU9XmcZRuSCFqtBo9nJLmtvarBaLJpMSvH860WagkS2srR95DO3wfpl47B+9/8ivQnP8e8F7bjr6t+wLwXtiP9yc+x/I1dyCs8wQA/ERFRP2RtReDn54fk5GQkJyfjkUcewfHjx/Hjjz/ixx9/xI4dO1BXVwcAOH36NL799lt8++23ANoDKZatM1OnTu3URlZpZs2ahY8++giZmZn49NNPUVlZidtvvx3Dhg1DQUEBXnnlFZSVlQEAHnzwQURHR8syhjcRVRxwa3YxEuP1QsYi11HqNihHlx1qXK5MGDMUy+alYuWGvcK7lRhb2rB0fS6WzUvtMzAhahvS/deNxYQxQ50exx6SJGF/UTW2ZhVjR35lp20uvW0PElmEV010KsjScYS976HI8AGQIGHdpwd6vN+SUZWVV46YiGAsSJ/otsAeERGR0mkkN10yMJvN+Pnnn61BkV9++aVTBoTlC4+vry/Gjx+PCy+8EPfcc49L51haWoqLL74YQPt2mBUrVvR4XGNjI+677z7s2rWr17EyMjLw2GOP9fpFTsQYctq9ezdmz55t/fc777yDSZMmuXweBqMJ6U9+LmQhoNVqsOG5Kzxin7k3kCQJD6zY7vRe+tULpwt9Dyl1Xq4gSRLyi2qwNasYOfkVQhfo/T0nIp73mGEDsebhGS593gtLa21e+HZdzC5/Y5eQwI9a6Px9sDgjyeVBKlfq6z3ko9VgamIkRkeH4t0vDqHZZPsWUG947oiIyDvIsQ6VNROkL1qtFhMmTMCECRPw0EMP4dSpU8jJycGuXbuwa9cuFBUVQZIkmEwm7Nq1C7t373Z5EMRWAwcOxJtvvonNmzfjk08+waFDh9DQ0IDBgwdjwoQJmD17NqZOnSr7GN5AZHFAs1lCTZ2RQRCVELkNSmQGkFLn5QoajQaJ8XokxuthMJpQU2dsr1VwvB6rNv7k1Nj9PSeWbUiL1mY6VC9D5++DBbdc4NIAyL6CKixdn2vzfC3bgyyLWVHZL2owMiIY870gm6G391BggC/CQ3Qorz6NRWsz7QqAALZnVBEREXkjtwVBuho8eDDS0tIwc+ZMHDx4ED/++CM2btyImpoat+1vjYqKQkFBgU3HarVaXHfddbjuuuscfjwRY3g60cUBm5pbhY5H8lHqNiilzsvVgnR+1oDiR9sLhYzZ33Niqa1gT2ABOHOV3JWLw8LSWrvnCXRezIrqzqNUlsyHWdNGISEuXHWZUc7q+B4CzhQBd/TvnrGlDS9u2KvKLDMiIiI5uT0IcuzYMezZswd79+7F/v37cfjw4U7dYiwBEF9ft0+VFEB0ccDAAL6u1MBgNCEnv0LIWDn7K2AwmoRkACl1Xu7k6ufE3toK7sgwELmYdSb7RYm0GuC5e6dh8CAdwkN0Ln39G4wmVNc2wdjSBp2/D/ShgYp6/3lzlhkREZGcXLoCbGtrw4EDB6xBj71796Km5kyHjo4ZHxqNBqNHj8a0adMwdepUJCUluXKqpFD60EBoNYCIHTFarQbhITrnByLZKXUblDvmpfSFmzuek/ioUKxZOL3f2gruyjAQvZh1JPtFqZLHDsfYs4f0e5yo170jRWndhVlmRERE8pA1CNLY2Ih9+/Z1yvQwGo3W+7tuc4mKirJ2k5k6dSrCwsLknB6pUJDOD6HBAThZ3+z0WKED/RW1eKTeKXUblKvmpaaFm7v+W/VXW8Gd73XRi1k5u/O42qxpo3q9T/Trvr+itErqsMIsMyIiIvkIDYKUlZVZMzz27NmDwsLCToGOrkGPwYMHY+rUqdbAh7e3fqX+GYwmIQEQADhZ38wvhqqhzLagrtiepaaFG6CMLWtdayu4k1yL2f6yX9RgZEQwEuLCu/3cYDRhb0EV3th6AJU1hh7Ptfd172xRWldTavYbERGRJxAaBLn44os7XY3pGvQIDAzEpEmTkJycjGnTpuGcc84R+fDkBaprm4SOxy+G6uCm2sj90ocGQqvVCFms+PSwPUttCzdA/udEbeRczHbNfqmubcKzr+3E8ZM9Bw6UROfvg/npE63fGTpmfeTsr7DrPd/f615EUVpXBxaVmv1GRETkCbRyDCpJEiRJgq+vLyZMmIC5c+fi7bffRm5uLl599VXceeedDICQQ2obxGSBWJyqN/Z/ELmdu7d49CZI54fkhEghY01NjOwUkHN24VZYWitkXvaS8zlRI1ctZoN0foiJGITH5kwWno3T0e1p58Lfz7mvDl278xSW1uKBFdvx+MvZyM6zLwBi0dvrXlRRWld3qVNCRhUREZGnEh4EiY+Px+23347//Oc/2LlzJzZs2ICHHnoIkyZNgp+fur/MkvuJvpplNKm/sKA3cFebbFukpcQKGadjbQS1Ltws5HhO1MrVi1lL22C5AiFf7jyKFpPZ4fP9fLVYOjfFmrGxr6AKi9ZmCqlt0tPrXmRRWleyZFSJ4AkZVURERCIJDYJkZWVhy5YtWLx4MX7/+99jwIABwsY+ffq0sLFIvURfzdL5yXfFlMQxtggOfjWbhI2VGKdHTESwU2N0rY2g1oWbhRzPiVq5YzFrKZzq7H+DnvRWo8NWplYzjM3twT1Hs5360vV1L7IorSsxo4qIiEg+QoMg4eE9f2EtKChwatzt27fjyiuvdGoM8gy6ALFBCx1ThFXhxCmxtWCqBI6n0WiwIH2iw1feu9ZGANS7cLOQ4zmxh8FoQkllPX4tOYWSynoYjOKCXvZy12LWUjj1qbumCHlskbZmFzud7dTf+IA8RWldiRlVRERE8nDJCnDOnDlYv3693XVATp48ieeffx6ff/65TDMjtVHwrgiSUf3pFqHjNTaJXcxYtiA8//pOtLTavlXA31fbqTYC4DmtMS3Pib1X+rvWi7CVktsIp6XEIiuv3Olx7F3MajQaTD4vAiljhwt5fFFy9ldg18FK2dr7Wl73au+wYsmocuZ58pSMKiIiIpFkKYzaVW1tLTIyMnDo0CGbz/n444+RlpaGzz//XNH1AMi1mgVfNTSyYr4qBAf5Cx1vYKDY8azsXVv3cLwcCzd3sXdbxsiIYCybl2p3Z5uuhTW7Pn+WdqqPv5yNB1Zsd3nRWHdvDxKVUSCK2Szh0x/ly1KyvO7V3mHF3RlVREREnsolQRAAqKurw5w5c3DgwIE+jystLcVdd92FxYsXo66uzhoASUtLc8U0SeFYGNU7ia5tIHo8S20DewtGtpjM3TpaqH3h1pVlW8bS+1OQMnZ4t/oYPloNUsYNx9L7U7B64XS7M0DsLaxpaae6r6DKrsdxhrsXsyKCMBFhQU6d39VPh08IHa+rpuZWj+iw4mihW1szqpS0dYyIiMhVXPIXPS0tDZ999hnq6upwxx134LXXXkNCQkKnYyRJwvr16/HSSy/BaDRagx/R0dFYsmQJUlNTXTFVUjgWRvVOojsbhA0KEDaWqE4uqxdOh0aj8YiFW1cajQaJ8XokxuthMJpQU2dEU3MrAgN8ER6ic3iLgbNthJfNS7U76OIoV28P6sgShFm0NtOh16nO3wdzrjwPf39zt8Nz6EruBE/La0ur1QjJrHJnhxVLRtXKDXttCvaNjAjG/PSJvb5mlLx1jIiIyBVc8u34n//8JwYMGID3338fdXV1uPPOO/Haa68hMTERAHDo0CE88cQT+OWXX6zBD19fX9x1112YO3cuAgLELVhI3UKDxb4WBg9i20A1MBjFZjM0NYvLthDZySUxXt/eTUQDiNgRo1Vga8wgnZ+Qugqig0+uIHox25WlDoaxpQ06fx/oQwOtz7WzQZgxIwcLCyiIGqc3loCFpSitiHoo7u6wYsmoyi+qwdasYuTkd9725aPVYGpiJGZNG4WEuHBoNJoeXw/l1af7fP1Zto5l5ZUjJiIYC+x4/REREamFS4IgGo0Gzz33HAYMGID169ejvr4ed955J9auXYusrCy89tpraGtrswZAJk2ahGeeeQZxcXGumB6piD40EBqNmKuIWo34DAOSh5K3iIjs5JIYr0eQzg+DB+mE1PIYHBzgsa0xRQefXMWRxWxf7Lmq72wQRlRAYdzZeuwrkG87TMeAhbuK0srBloyqvl4PGk37GLYGoCxbxxZnJNldp4eIiEjJXJon/dhjjyEoKAj//ve/0djYiDlz5gCANfgRGhqKhx9+GNdff70rp0UqEqTzw9TzI5CTX+n0WFMSIjx2gehplLpFRK4WnCfrxRQzPVlvdFt3GLmJDj65kqjtQYWltQ5d1Xc0CCMqoHBV6ln4+XC1bNkgHQMWntphpaeMqv5eD5IEuwvNu2PrGBERkdxcvln8oYceQnBwMP7+979Do9FAkiRoNBpcc801eOSRRzB48GBXT4lU5ryzwoUEQc4f5dqFDzlOHxqoyL39cnRykSRJWL0ESYLL23q6gqe0EQYc3x60r6DKrq0tXa/qOxKEERVQmHTuMGFZJT2N3zFgIaIeiho6rNj7erCHO7aOERERycll3WE6uuOOO/Dss89a/5j6+/vj6quvZgCEbHLwyElFjUPyC9L5YWpChJCxpiaI29svxzYdJW/9UQpPaiPsCGcLwnbsRhSk80P0sGCMjhmM6GHBfb43RHa5kaNtb28BC7k7rLibo68He1i2jhEREXkCtwRBAOCPf/wjXnjhBfj6+qKlpQVz585FTk6Ou6ZDKmEwmrBDQBYIAOTkV7AdoIqcGxumqHEAebbpKHXrj5J4c6BIVEFYe7dFWIgKKIho29vX+F1Z6qHY+pgjI4KxbF6q4mthOPt6sMfW7GLZH4OIiMgVhH47vvjii+0+x8fHB62trWhqasK9996LIUOG9HicRqPB119/7ewUSeXkuALsaVsFPNXBYjGZOweO1OAPvxNTdFmp23QsNPDM4r/eHChSQkFYZwusWop3hg4MQAmc+116Gr83oovSKoGI14Ot3L11jIiISBSh3/zKysoc+tJgOcdkMqG8vPseYUvdECJvvgLszQxGE3b8IiYDaEd+pbAv8nK04BSZnSRfE1L3UnrwSbTqWgOKSuvQYGjBlzuPChnT2YKwjgYU+iveaSutRoPksfYHLEQVpVUKUQWCbcELB0RE5CmEX/5yNMWWyBbefAXYmyk5A0h0C87q2ianx+rIExctcgSflMZsNuOTH3/Dx98X4aQMNUtEXNW3N6AgonhnRFgQMq48DxPGDHX6v5ujRWmVQmSBYFvxwgEREXkCoSvAQ4cOiRyOqBtvuwJM7ZScASS6BaeSf1cRDEYTqmubYGxpg87fB/rQQIcWoqKDT0qyfc8xrH7vJ5hazbI9huhgYH8BBWeLd447W4+bZo5RzTYVVxAZHLYVLxwQEZEn4F8zUpUgnR+mnh+B7P3OX/2akhCh6quA3kTJGUCiW3Aq+Xd1lKUGxNasYuzIr+y0cNNqNUhOiERaSiwS4/Q2L3BFBJ/8fLUIDBD7fDvKEhzamlWMz7KPuOQxXRUgE1G8s7ahmQGQLlxRDLUrpbxfiIiInOH+b8dEdjp3VJiQIMh5seECZkOuoPQMIEvHjOfX7USLyfar9/5+2m4dLZT+u9qrvxoQZrOErLxyZOWVIyYiGAtsKHAJOB98AgBTqxmL/p2FxRlJbukC0ldwyBVcFSBTQjFXTyQ6YGqLpmbXB16IiIhEE9oiNy8vT+RwNtu/f79bHpfc4+ARMV1CRI1D8rPUgBBB1hoQ9q5hezheNb+rDfYVVGHR2kybF8AllQ1YtDYT+wqqbDre0XatHRlb2rB0fS4KS2sdHsMRhaW1eGDFdjz+cjay8ypcHgBxZYBMVPFOtmjtzBIwdSWlba8jIiJyhNAgyM0334xFixbh+PHjIoft1YkTJ/D444/jpptucsnjkfsZjCbsyBfTJSQnv0JoJw6S1xXTYoWMk5YsZpyOLPUOWuys4dDSau5xAZ6WEitkXu6sd+FoDQh7gxITxgzF0rkp8PN1/M+ZsaUNL27Y67LC3vYGh+TgqgCZyOKdlmKu1E5kwNRWStheR0RE5CyhQZChQ4fi448/xuWXX45//vOfOHXqlMjhrY4fP47ly5fjkksuwYcffoihQ12fxkzuIUeXEFILZXaecrbeQU8LcEu9C2d0LLbqCgajCSWV9fi15BSOVtTjn+/sEfqc9KWpudXpIqKW7RZyc7ZAqCiuCpDxM1teogKmtlDC9joiIiIRhIb0t2zZgqeffhpbt27F//73P7z99tu4/PLLccMNN+CCCy5wamyz2YzMzEx8/PHH+Oqrr9DW1gZJkjBjxgwsXbpU0G9ASufpnTOod59nHxUyzmc5RzD27CFCxgLkqXcgutiqXOSsaWFPDQiR2y3krDkhokCoCK4MkPEzW14iCgTbyt3b64iIiEQRGgQJDg7GP//5T1xxxRVYunQpysvLsXnzZmzevBnDhg3DRRddhOTkZJxzzjmIjY3t9wt6cXExfv75Z2RlZSEzMxO1tbUA2r9IDhkyBIsWLUJaWprIX4EUzhM7Z1D/5EipF/VlXq4FuKXehb1ZAzp/n27FVuXQX8FTEWwJSij5tdGViICZs1wVIOv4eEoeT+1EFAi2lRLbSRMRETlClhXgzJkzceGFF2LdunVYt24d6urqUFlZiffffx/vv/8+AMDf3x8jR45ESEgIgoODERQUhJaWFpw+fRrHjx9HWVkZjMYzaa+WtOhBgwbhzjvvREZGBnQ6pmV6G0/rnEG2kSOlXsRCV+4F+IQxQ7FsXipWvrsXJcf7XzyPjAjGfBu7qzhjX0GVS7Z02BKUUOproyeiAmaOclWArCORn9kAsOyNXfjr7Atc+jsonaMBU3u4ensdERGRnGS7DB4QEID77rsPt956KzZt2oT33nsPR4+eSWdvbm7G4cOHez2/617w2NhYpKen48Ybb0RQUJBc0yaFsxSCy8ord3ospvaqh1JT6l21AJdsrIdidkFhT1fWtLAlKKHU10ZXIgNmjnBVgKwrkZ/ZAFBa1YhFazPd1tZYqawBUxmys1ydPURERCQ32fcCDBw4EHfddRfuuusu7NmzB9988w127tyJgoICtLb2/mXT19cXCQkJmDJlCi6++GKMHTtW7qmSSqSlxAr5Qs3UXvVQ6jYouRfg9mZcHDsu7wLRHTUt+gtKKPW10ZXIgJmtfLQaTE2MxKxpo5AQF+62Rayoz2wLSwehZfNSmRHSQXxUKNYsnI78ohpszSpGTn7n1stajQbQwK7XoTuyh4iIiOTm0oIIF1xwgbVAaktLC44dO4aKigo0NDSgpaUFOp0OAwcOxIgRIxAdHQ0fH+79pe5EFIJjaq+6KHUblJwLcGdbzMqxQHRHTYv+ghL60EBhj6UBZNsi56rAUchAfzx111QEBvgiPETXZxaNwWhCdW0TjC1t0Pn7QB8aKEt2XFCALzQaQGSikqWD0OqF05mh0IFGo0FivB6J8XoYjCbU1BnR1NxqfT2UV5+2OVvEXdlDREREcnNbVUh/f3/ExcUhLi7OXVMglVJL5wwSR6nboIJ0Yj9CAwPagyqi2u6KXiC6uqaFq+v2yJmn4aqCnjfOGI3RMYN7vb+vjj5arQbJCZFIS4lFYpxeyGtHkiSs3LhPaADEwp4OQt4oSOfX7bOuv2wRUdlDrgqwEREROYKtMUiV4qNC8ceZo/HmZwftPvePM0fzypYKKXEblMEotn5EU3N70EOOtrvOckdNi3NHhfW7cKqubRL6mHIVRhVdILQnvj4ajBkZipLK+h4Xnf119DGbJWTllSMrrxwxEcFYICALQO7sIbnbGnui/rJFHH39uzrARkRE5CgGQUiVCktr8d7Xvzp07ntf/4oJY4YyEKIyStwGJVdNELna7jrDHTUtbKGWwqiiC4T2pLVNwsOrMwF0X3T+9OsJu7ZXlVQ2CKkvI3f2kNxtjT1dT9kijnBHgI2IiMhRWndPgMheorYKdO1ARMpm2Qbl6LYCObZByVETRI62uyK4shiqxS+/1fQ7f7UURgXas5lcxbLofPzlbNyz7Gs8//pOh+vLFJbWOjQHV2QPWToIkfvsK6jCorWZNgeoLQG2fQVVMs+MiIioZwyCkOqI3CpA6hIfFYrFGUl2L3zl6nBg2eIggqX+hRxtd0VwVU2LjiQJ/c5fjv8GcrFkM7laZY0BLa1mh851JmjsquwhubJ3qH/OFnB2NMBGJBeDqQmldRUorDmC0roKGExit1wSkTJwOwypjhK3CpDrTBgzFMvmpSqiw0GQzg9Tz49A9n7nr3ZPSYhAkM4PxpZGATM7Q9QC0RU1LXrS3/yVWjS3J84WdXYXR+vLuOp3lDN7h3qn1ALORPaSJAm/VP2KLwq/x66yn2GWzgSNtRotkkaMx6XxF+H8oaP5WiXyEPzmQKoix1YB7iVXH1d1OLDFuaPChARBzottr1Wi1O0drqhp0RNb5q/Eorm9sWQz2Xv13M9Xi8nnDsXuQ1VoMTmW1eEMR4LGrsgecnUHITpDiQWciez128kSrN25Hsfqe/47bpbM2FG6FztK9yJ6UCTmTcnAWWExLp4lEYnGIAipihxbBRgEUaeOHQ6OHa9H3uFqnGowYnCwDmPP1iN62CCXzOPgkZPCxvnD7+KEZlyIXiCKCjbYytb5K7Fobl8s2Uz/fGcPSqv6z/yJDB8ACRKy91e6YHY9cyRo7IrsIbmzd6h3zMoktcurPIgXsl5Bc2uzTccfq6/Aku3/wsMp92JsxLkyz46I5MQgCKmKWjpBkPzMZjM++fE3fPx9EU72UDciPESHa34Xh6svPAtarTzljwxGE3bki1mY5uSfWWQqdXuHiGCDPaYm2DZ/Z7eZyFE0tzcd24iWV5/u9TitBkgeOxyjo0Px7heH0OyG7I+OHAkauyJ7yBXZO0pmMJpQXdsEY0sbdP4+PbZGlutxmZVJavbbyRK7AiAWza3NeCHrFTwz/S/MCCFSMQZBSFWUulWAXGv7nmNY/d5PMPVR7LGmzojXPvkFb352EA/+cTymXxAtfB5yZSZdMW2kkIVjWnKs8xPrwNU1Lc6NDbP5WEe3mchVNLcn/bUR7Wj4kIGYcn4E/v3Bz24PgFg4EjSWM3soZthAl2XvKEnHQNqO/MpOn0FdWyPLFdhjViapmSRJWLtzvd0BEIvm1maszX0DKy57gjVCiFSK3WFIVdTUCYLk8f43v+Jf7+7tMwDSkanVjH+9uxfvf/Or8LnIl5mk3C9VjnboccSBI/Z1cLJsM7G1A8vIiGAsm5eKCWOG9nqMwWhCSWU9fi05hZLKeodbDtvbRrS0qtGpopNycCRoLGdHnKsujPO6BUhhaS0eWLEdj7+cjey8im6BiI6tkef+41vZuq8wK5PU7JeqX3utAWKrY3XlOHDisKAZEZGrufwyeEVFBT744ANERkbihhtu6Hb/u+++izfeeAMzZ87ErbfeisjISFdPkRRMyVsFSH7b9xzDm58ddOjcNz87CH1ooNCMELkykz7PPiJkvM9yjmDs2UOEjNWRvR16HLUjv9LuNHkRRXNFX2l3tI2oA11pZeNo0FjO7KGfDp/A5YKznZRsX0GVXa+j0qpG/PXF73H7rPNw3e/jhQaMmJVJavZl4Q9Cxvmi8HucP3S0kLGIyLVc+lfnlVdewerVq9HW1oZLLrmkxyDIsWPHcPToUbz++ut49913sXjxYtx4442unCYpnJo6QZA4ZrMZq9/7yakxVr/3E343YYSwGiH60EAh4wDtuR/hIToYjCZk7xezfSA7r1y2vfb9BRtEcDRNvmPRXIPRhJo6I5qaWxEY4IvwEF2f4/W3ZcVypT0rrxwxEcFY0E/7ZWfbiCqFM0FjR7cq9cebakk4GkgzS8D6Tw9gW84RPHr7ZGHbvpRcwJmoLwZTE3LLfhIyVm7pTzCYmhDkJ+67ABG5hsu2w7z00kt48cUX0draCkmScOTIkR6Pq6+vB9D+xbGpqQlPPfUU3nvvPVdNk1RARHq1KztBkBif/PibzVtgemNqNWPLj8WCZiSWZSlRXdskLANAktpro8jFEmx4bM5kbHjuCvz7kRn4803jhT6Gs2nyQTo/RA8LxuiYwYgeFtzngtneLSsllQ1YtDYT+wqqej1GRBtRJXA2aGzJHorUDxA0ozNBMk8nIpBWWWPo97VqD0tWpgjMyiRXOmmohVkSU2fJLJlxsqlWyFhE5FouCYIcOnQI//nPfyD93zf7a665Bs8//3yPx/7tb3/D999/j3vuuQe+vr6QJAlLly5Febnr2jKSsmk0Gtww42ynxrh+xtlet5dc7TZ/XyRknI+/LxQyDtAesBCpps6o2r32HYMNIrkqTd7RK+3GljYsXZ/ba+0FUW1E3UlU0Dg+KhR/vWWigBmd4Q21JEQF0vp7rdorLSVWyDjMyiRXMjpYDLXX8UxixyMi13BJEGTDhg0wm83QaDR48sknsXz5cowdO7bX44cNG4a//OUv+Mc//gEAaG5uxjvvvOOKqZIKSJKED751rhjVh98etgblSPmqaw3CrvjW1BlRXWsQMpYcAQu1vy6VVrzYlsKmzl5pN7a04cUNe7v9txPZRtRdRLcPFh3U8oZaEiIDab29Vh3BrExSI51vgNjx/MSOR0Su4ZIgyK5du6DRaDBu3DjMnj3b5vPS0tIwceJESJKEH3/8UcYZkpqIuCp2tLIB+UX2dZ4g9ykqrRM63m/l9YJGEh+wUHuCkhLS5CVJQl7hCSx7IxfpT36OeS9sx19X/YB5L2xH+pOfY/kbu5BXeMK6EJTrM0VkG1F3kKN9sNKCZEonRyBN1N8/S9FbR4ukig6wEdkiLCgUWo2Y5Y+PRouwwFAhYxGRa7kkCFJR0f4HfPLkyXafO2XKFABAaWmp0DmReom6KrY1W5m1Iai7BkOL0PHqG8Wkr8qTtKHOBUHHjItJ5/bectYejqTJ29NC9IEV21FYWivbZ4rSiqH6+2kRER5k07G2tA92hBKCZGoiVyBN1N8/R1tmyxFgI7JFkF8gkkaMFzLW5KjxLIpKpFIuySNtbW3fsxsQYH/KmL+/PwCgrU1ZXybJPUReFfOmzgJqFxzkL3S8QQPFpK/KcQVTTa0n+2ol6yw/Xy3OPyvMrnPsbSFaUtmAx9ZmosUk5u9L188U0f8tneHvq8UTd0zB+NFDnGof7CyD0YRJ5w5VRIcvg9GE6tomGFvaoPP3gT40UHF/D+QKpIn8+2dtmf3uXpQc7z+jamREMOb301WJSE6Xxl+EHaV7nR7nsvjfCZgNEbmDS4IgQ4YMQUVFBQ4ePGj3uUVF7cUQw8O5Z5TEXhVztP0muV5cVIjQ8c4aPkjIOHIELMJDdKpoPdlfK1lnmVrN+OW3k0iM19s8H0cKmzYLXGR2/UwR2UbUWeeOCrNmdXRtH3yq3mgNBIQGB0AfGig0ACJHsMzRWhJ9zUWr1SA5IRJpKbFIjNMrYpuGXIE0Of7+STZuDzSrvO4Rqd/5Q0cjelAkjtU7flEtOmQ4zhviXJF+IgtzswGt9TUwtxih9dfBd1A4tAG2ZW6SY1wSBBk/fjzKy8vxww8/4MiRI4iNjbXpvOPHj+Obb76x1hMhUmvnDHKOPjQI4SE6IcVRw0N00IeK+cOiDxWXBqtB+9ws2wVEXCmXa7uAvRkXjtqaXWxTEEREC1FROn6miPxv6az9RTWdrvxLkoTC0lrZgwFyBMscrSXR31wsW6Wy8soRExGMBQrIVpAzkCbq75+9nwfHjjdi0dpMLM5IEr7disgWGo0G86ZkYMn2f6HZgW4xAb4BmJc0RxGBUlIvSZJgPJqP+j3bcLogF+jYulmjxYAxUzDogsugG5nA15oMXFIT5KqrrgLQvi1m3rx51hohfTl58iQeeOABNDW1t6CcNWuWrHMkteAVJG91ze/ihIxz7e/ihYwDtC9yRWVahP1fAARQdutJRzMuHGFJ2e+PqBaiInTdfiTqv6WzLFf+AcfqpjhiX0EVFq3NFB4AcaSWhL1zKalswKK1mdhXUOXALMURWUOlKxFb5eRqLU0kt7PCYvBwyr0IsLNbTIBvAB5OuRdnhcXINDPyBs0Vv6H01QWoeOdpnD60o3MABAAkM04fykHFO0+j9NUFaK74zT0T9WAuCYJMnz4d48ePBwD89ttvuPLKK7F06VJkZ2ejqqoKzc3NaG5uxokTJ7Bz506sWLECaWlpyM/Ph0ajwfjx/5+9M4+Pqrz3/+dMMpnJhCSTZMhGEkISQCVhUwIY1GK5UqFaq9Zbeqvya29rFfWixQUttWqvtJVqq1JrvVXEWq11q4oFrUWUNSBLCEsgCZB9zyQhs2Qmc35/xJPMJLOf71lm8rx9+XqFyZlnniQz55zn83y/n89sLFmyRNI5tra2YsOGDbjmmmswZ84czJkzB9/4xjfwy1/+ElVVVQGf73K58Pbbb+Pmm29GaWkpiouLsXjxYvz0pz/F/v37g5oDxRjRDquiHb9ce1kBtLHiTlnaWA2uuYxOGLDYHOjupYnu7e61DS/4SwpNosWVtGQ9efSk3BUX7gt3f1BGiIrBW/sRRYwoFVa7UzYxQAqxLFyz1khfqEshpFG0ykkVLc1gyMXMzAvx6OJ7kZsUnNCYm5yNRxffi5mZF0o8M0Y0Y6k9gqZX18HRXh/U8Y72ejS9ug6W2iMSz2x8IUs7DABs2LAB3/ve99DW1gaLxYJXX30Vr776qt/n8DyPSZMm4ZlnnpF0bv/617/wwAMP4Pz58x6PnzlzBmfOnMHrr7+On/zkJ7jrrru8Pr+vrw933HEHysvLPR5vampCU1MTtmzZgpUrV+LBBx/0OQeKMcYDrBxs/KLRaHDXTbPx1F/DNzO766bZ0GjotN8OsxVUVeouHsM9+jzPo0dkgk3PeTt4nif9zChRcRGoZF+KCNFw8dZ+JMSIrt24U/F2nfZuC373xqGwxYD1qxYFVYFBKZaJNWulWqg/u2axYtcfQUij/OxRtMpRRksH6/3DYFBTkJqHDd9Yh+Ptp7Ht9A6UNx6Gy21XPobTYF7ObCwtugIXTZzK7kMZorA316L1rd+Ad4S2gcY7bGh96zfIvvlx6LIKJJrd+EI2ESQnJwdvvfUW1q1bhx07dgT1nMWLF+N///d/kZoaWkJAKBw6dAirV6+Gw+FATEwMbrrpJlx++eWYMGECjh8/jhdffBEdHR147rnnkJCQgB/84Acez+d5HqtXrx4WLxYtWoQVK1bAZDLhxIkTePHFF9HY2IiXX34Zqamp+PGPfzxmDhRjjBciKTmDQc/ii3NRcbod/9ofnHruzpJ5uVh8cS7pfKTyqHn/i1o4B8WpK85BHh98cQbfImojApSpuAj0GZUqQjQcfLUfCTGicrUReSNGw+GlD47JIgZQiWXaWA3uv/liLCjODnuMaFioSyGkUbTKUUZLMxGEoSQcx2FG+jTMSJ8Gi8OKLqsZNocdeq0OqfFGFoPLIIHnebR98EzIAsjw8x02tH3wLHJ+9BQT4wiQpR1GID09HS+88AI+/PBDrF69GvPmzUNubi7i4+MRFxcHk8mE2bNn4wc/+AHee+89PP/885IKIADw2GOPweEYKkF/5pln8Itf/AJXXnklSktLsXLlSrz//vuYOHEiAODZZ59FT0+Px/M/+OAD7Ny5EwBw/fXX489//jOWLFmC2bNnY8WKFXjnnXdQVDTkQfDcc8+hpaVlzBwoxhgvSGFEyYgcqhvM2HGoMazn7jjUSF7WLpUo996OGpLx3t1RTTIOoEzFRTAl+0pXVwgESisRYkTzMpRpjcnNSERbt1XUGIIYEAiqxbHD6cJvXzso6nNLuVBXEkFI02nF37ZlpSWIbpWTIq6ewVADBm08cpKyUJSWj5ykLCaAMMiwnasMugXGF472OtjqjhHNaHwjqwgiUFRUhJ/85Cd49dVX8cknn+DQoUOoqKjAzp078cYbb+D+++/HBRdcIPk8Kisrcfz4cQDA0qVLvfqOpKWl4Yc//CEAwGKx4LPPPvP4/ssvvwwAmDBhAh544IExzzcajXj00UcBAHa7HZs3bx5zDMUY4wWpjCgZ6ofnefx68344nK7AB3vB4XTh15v3k/afSyHKdZgtJCk4wFB7TYfZQjKWEhUXwZTsSxUhGgqhpJXYHcokUp1r7iUZJ5AYQC2WifGNiLaFuiCkxcaI2wEMNsrWH1LE1TMYDEY00/vlNqJxtpKMM95RRARRCwMDA1iyZAny8vLwH//xHz6PKygY6b1yT7apr68fFlEWL14Mo9Ho9fmXXHIJpkwZKj3dutXzjUsxxnhCKiNKhvqpqG5HS6e4BX1LpwVHqzuIZkSLsJyoaejxe1yo1DbRLH6VqLgIpmTfZIyHhqgqlOMQ8k57sGklgiFpa5e4aoxwiI3RkOVqBRIDpBDLgq1AkXIualmoW+1O0a1yLZ2WsH6f7rC4egaDwQgel92C/qp9JGP1n9wHl51mg2s8EzEiSGtrK/mYc+fOxcaNG/HJJ58Mx/h6o7FxpPw+PX3Elf7LL78c/nrBggV+X6u0tHR4rLq6OtIxxhNSGFEyIoPXPz5FM84ngdOegqXDTLug7eyxoc8yQDpmr0iDVQG5Ky4CtZcIGPRapCQRVYcl6fGrOy8LOs0l2LQSOWOFRxMXq4FzMLzqKW8EEgOk+hnDaUeJxoW6Wtp7mD8Xg8FgBI+zt3NsDG648C44+7poxhrHyH7VaW1txbFjx9DX1wen0zmmxJXnefA8D4fDAZvNBrPZjGPHjmH//v04evSo3NNFV1cXXnrpJQCAwWDA4sWLh79XXT3Sb5+fn+93nNzcEUPG06dPIy8vj2yM8UQ03tQyAmOxOXCsVtzOpUBlTScsNgdJK5QU78dEQxzpmEkTdCTjULb+BCKU9hKLzYEuouqwrl4bsk0JeG7NYlTWdGLLrjPYU9nsUU0QalqJ3LHC7sRpNZiaY8SxM7Q3S/7Om1KJZUIFSiif22hbqEvR3hPuedBkjIdGw5FU2lDE9TIYDIaacQ3Qbrq67PJXlUYbsl3Ru7q68NBDDwWdDOMOdcxjIOx2OxoaGvDpp59i8+bNaG9vB8dxWLduHVJSUoaPczcozc72716flTWSQe7+PIoxgkWI2w2Hqiq63XMxRNtNLSM46ltpY1kb2s5jWl5K4AMDQu+RUZiTTDpeQXYS6XhSE2x7iUCH2Qoqmxf+q+qw3IxElBSZUFJkgsXmQGePDVa7E/G6WKSF6CWkRKywQMoEHU6c6yYf1995k3Jx7I5QgRLK7763n66qSg0LdSnae8IVQQx6LRYWZ2FXRXj3FO5QxPUyGAyGmtHE0V4/NDpm2CsWWVaALpcLP/rRj3D8+PGgzM04jhtzXFKSPDfyR48exY033ujxWGZmJn7xi194VIEA8EiKSUhI8DuuwWAY/rqvb+SGmGKMYHn77bfx3HPPhfw8NcF2n8YnrV20vY+tXRYSEYTQY3UYk9GAtGQ9SatWWrIeJqMh8IFBQN36443JmYlYvWJu0AIIIH11mEGvFbVAUyJWWKBVZBqMNwKdNykXx6MJpXLvUFUbnthUTvbaalioq60ScllZPsnfmSKul8FgMNRMbFIawGloWmI0MYhNlDY9dTwgiyfIP//5Txw7NhLnU1RUhOXLl+PSSy8FAMTGxuLb3/42vvGNb6C0tBQ63Uj5tlarxcaNG/HFF1/IMVWvlRLt7e3429/+hsrKSo/HBwZGdpn0ev+Laffvuz+PYozxhHCDTYEabmoZkY1UFWrXXVFIMs63rygiGQeQxxjVFYaqpObqMCVihaUmmPPmsrJ8SV472L+NFB4slAt1i82BupZenKrrRl1Lb9AG3Wp7r5cUmoL2z/FFsN4/DAaDEclodAYkTJ9PMlbC9FJodDQbXOMZWSpBPvnkk+Gv77vvvuHI2Y6ODixatAiDg4O49dZbh2Nx7XY7nnrqKbzyyitwOp34xz/+ga9//etyTBX5+fl44YUXkJqaira2NmzZsgUfffQRtm/fjr179+LZZ5/FZZddBgCIiRm5IQmmL1xAoxnRnijGGG+w3afxR2Ya7ck+I5VqPGkiY6+9rACvbDkuKgUiNobDNZfRvcflMEatbz2PtRt34qGVpQHNRgUa28+Tvb63KgeLzYEOsxW2gUHo42JgMsYHLZ4qESssNcGcN4XFMWUbULCVe1J4sFAs1Hmex9GaDmzZdQZ7K1s83hcaDYeFxVlYVpaPkkKTz3sBtVVCchyHe1bMxdqNO8P6fYfi/cNgMBiRTtLFS9F/cg/BON8gmA1DFhFEqKAoLCwcFkAAwGQyIS8vD/X19di9e/ewCKLT6bB27VoMDg7iL3/5Cz755BMcOHAAl1xyieRznT59OqZPnz787yVLlmDRokV46KGHYLVasWbNGnz66aeYMGGCR3uKzWZDXJxvQ0O7fSShwf04ijGC5YYbbsDChQtDfh4w5Any2GOPhfVcaihusNnuU2SRky5ut9EdDkBO+gSSsaRohwGGFhfJE3SiWmKSJ+hIFxdSeT2MxjYwiCc2lWP9qkUB22KqG8x46q8HyV5bqHKgWLACysQKS0luxoSgzptiF8feCLZyj9qDhWKhXt1gxtOvH/Q5L5eLx66KJuyqaEJeZiLu8dESpkYfjqIcIx5aWRpy5U2o3j8MBoMR6egnF0M7MReO9vqwx9BOzIM+bwbhrMYvspQTmM1mcBw33P7izgUXXACe51FRUTHmez/96U+HfTLef/99yefpixtuuAFLly4FMPSzbNu2DYCnh4fV6r/32mIZ8TRITh4xPqQYI1iys7NxySWXhPW/uzCkNMINdrg702z3KfIw6LUoLqARrWYUppG1QUn1Hjpa0yHaE6Szx4bKGppEHYC2FS0QtoFB/O71g349pKTY8V9+6RRUN5hx54btePj53dhd0TxG9BEWrA8/vxt3btiO6gazz/HkjhWWEo2Gw73fuzjo93zhpGR896rpoPqEBFu5R+nBQrFQP1TVhrUbdwYtzNS19GHtxp04VNXm9ftUrUaUlZBzpqdj/apF5NHSDAaDEU1wHIf0a+4Gpw2vCo/T6pF+zV1s/UKELCKIzTZ0Mz9x4sQx3ysqGupZP3Xq1JjvxcfH42tf+xp4nh/jxyE3V1111fDXJ06cAABMmjRp+LHmZv993+7fz8jIGP6aYozxSFGOETctmRbWc29aMo3tPkUg372KRohb8R90gp5UPfpUC7ktu8+QjCMgldeDN8619PkVcah3/CdnJsLhHCRdsArVM9HAN8umBH3eFISkTR8eJ2kYC7Zyj9qD5ZH/XiBqoR6uN4lQDeVNYFOrD0dRjhHPrVmMJ24vQ9nM7DHv+xgNh7JZ2Xji9jI8u2YxuwYzGIxxiS6rABk33h+yEMJp9ci48X7osgokmtn4Q5Z2mOTkZHR1dcHhGGv+lZeXBwCoq6vD4OCgh0cGAEyePBkA0NjYSD6vvr4+1NXVoaGhAVdddZVfZc1oNA5/LfwcU6dOHX6srq4Os2fP9vn8+vqR0idB+KEaYzxS3WDGm/8aK5wFw5v/OoU509PZTViEMbPIhMw0A1o6w0+KyUpLQEmRiWxOJiNdRBmHoTQXyoXcnqPNsNgcZJUvxQVp0MZq4HASuJsHwZbdZ3z+vah3/G+4cirWv7I/7AWrt/YdKZNS5Obwqbag4uqFVBaqCp1QKveoPViSJ+gCH+QDsZVKQjXUs2sWe/zsavbh4DiOLFqawWAwohVDwSxk3/w42j54JqjWGO3EPKRfcxcTQIiRpRIkPX1oJ+XcuXNjvpebmwsAGBwcRG1t7ZjvC+XQ/f395PN67LHHcP311+Puu+/GyZMn/R5bV1c3/HVmZiYAYPbs2cM3EgcOHPD7/PLyoai+rKws5OTkDD9OMcZ4g+rmMpi4ZoZ64DgOD9wyD3Gx4Z224mI1uP+WS0hv/g16LVnMcupXiwTKhZzLxZNE7QpU1nbKJoAAIyLOaKh3/O/93ly89e/TkpxT5KyekZK61vMB26uoU1lCbUdRU4QsRaWSr2oowYcj1Eq0YH+f4abXuGPQa5GbkYhpeSnIzUgkF0Ao5shgMBhKocsqQM6PnkbW9x9FwgULh+Jz3dHEIOHChcj6/qPI+dFTTACRAFkqQS6++GKcOHECn332Gc6fP48JE0ZMCadMGelLPXDggEdlBABUV1cDgEdsLhXz5s0b9hp56623sG7dOq/HuVwuvPXWW8P/XrRoEYAhMWL27Nk4dOgQtm3bhvvvv9/jZxM4cOAAzpwZKksXvEUEKMYYb1DeXFJWBTCkpyjHiJ/9YD5++fI+DDiCX4zHaTX42f+bT179Y7E50N1LIzJ099pgsTlUtZAbDWX1RTAIIs7oBRT1jn+/zSHZOUWKpBSl8FeZQ+3RkplmwK3LL8L0ySlBP0dNEbKULW3efueCD4c/w1V3sk0JuOum2Sgu9P33ozADlpJImCODwWAEC8dxiJ9cjPjJxXDZLXD2dcFlt0Kji0dsYiqLwZUYWSpBlixZAgDo7e3FD3/4w2FhAwBSU1ORm5sLnuexadMmnD8/End45MgR/Pvf/wbHccMVI5QsW7YMKSlDN1h/+9vfsGfP2NginufxxBNP4NixYwCAsrIylJSUDH//5ptvBjBkmPrII4/A5fJcmPX09OCRRx4BAGi1Wnz/+98f8xoUY4wn1OqXwJCHOdPTced3ZkMbE9zpSxurwZ3fmS2JCV+H2QqqtbiLx1dVG+qsULLYHNh9VP62Dm8iDrVQ9O8D4Tu1u7Nl19hzilgjZzXhqzIHoPdoaem04NebD2DFun/iV6/sR0V1e8DqPUoPFjERslK0tHkjkA+HO00d/Xj4j7u9/i4pzYClIhLmyGAwGOGi0RkQZ8qBftJUxJlymAAiA7KIIAsWLMDcuXOHU2CuueYa/Pa3vx3+/nXXXQdgqOXkmmuuwa9//Ws8+OCDuPXWWzE4OHSze/nll5PPa8KECXj00Ueh0WjgcDjwgx/8AD//+c/x6aef4siRI3jvvfewYsUKvPrqqwCG2mCeeOIJjzGWL18+XBny4Ycf4uabb8a2bdtw+PBh/O1vf8O3v/3tYdHnrrvu8irmUIwxXpDr5pKhXg5VteEPbx2BYzC4ShCH04U/vHXEp3mlGKSo2lBrl1aH2arI3LztxlMLCpXVNCk6e442eT2nhNu+oLa9bH/tVVJVCYWyuKVMMBITIStnS5vgw/HgrfPwvz+5FFkm3zfO3n6X1Ok1UhAJc2QwGAxGZCGLCAIAv//974crPgAgLi5u+HsrV65EdnY2AKClpQWbNm3CP/7xj+FUmeTkZNxyyy2SzGvp0qV48sknYTAY4HK58Le//Q133HEHbrrpJjzwwAM4dOgQAKC4uBivvfbasB/I6J9t3rx5AIbaVu6++27853/+J37+858PG7quXLkSP/7xj33Og2KM8YCa/RIY0iNF2oIYpCi/V2sZN7XgEwy+duMpd/w1Go6s9makmmcsc6an444bZ0EbpKdNbIwGtyy/kGhmdHirzKH2aPFFMItbNUTIKtHSdqiqDY/+3140dwRnHF3X0ocHnv0Cv3xpn2rOp95Q2zmfwWAwGNGBbCLIxIkT8f777+OOO+4YY+yZkJCAF198EVOmTAHP88P/A0BaWhqef/55mEzSeTd885vfxNatW3HbbbfhwgsvREJCArRaLdLT07FkyRI8/fTT+Pvf/+7TjHTChAnYvHkz1q9fj4ULFyIlJQWxsbGYOHEirrrqKrzyyitYu3at38UNxRjjATX7JTCkRY2GuFKU36vJ18AdJYyEL5yS6nU3nnLH/6L8VJJxBHx5xAxXMAVpLOscdOGNj6ugtoRdb+8nao8WfwRa3KohQlbuz3C4QsGA04WBMI2O5TAYV+M5n8FgMBjRgSzGqALx8fG4++67cffdd4+Jyy0sLMQ//vEPfPLJJzhy5AgGBgZwwQUXYPny5V6NQqnJyMjAvffei3vvvTes52s0Glx//fW4/vrrw54DxRjRjloXiAzpUaMhLmUEqlB+bzIOtUFQ3LZzHMjSa9Smvy4ryyf5vc+eNhGVtTTtMABgc4xdsIW7SLU7XKoSQXxV5shdJWQbGMSvN+/Hz/5fKSamGDyEMjVEyAriKIUwFMibhNqQNhSkNhhX4zmfwWAwGNGBYitArXbs7p5Wq8WyZcuwbNkyBWbEiATkvLlkqAup0xbChWoxLpTfG/RapCbrSVq1UpP0hNGU8q/Gj9V2wmJzeP0ZKFJXJmcm4oIQ0keCQa/1FGrFLlJlKrAICl8+GUqYvrZ0WnDnhs+8poIIHiyhCk+hRvL6Qgpx1BfUhrShQn0+dUet53wGg8FgRD6ytMP84he/wOHDh+V4KUaUY9BrsWDGWF+WcJhfnEm4QGRIiZoNcYsL0oL2efCFNlaDGQVDbRkWmwNdRLG7XV/F7lKgxEKX9+OxITZ1RdjxT0miFUJHj6f0IpUSXz4ZlG1hoeLLOFWIkA22NWZyZiLWr1pEliIllzeJ3LHVo5HKYFzN53wGg8FgRD6yiCBvvPEGVqxYgauuugrPPfcc6urq5HhZRpRy4RSaHv6L8sPv+WbIi5oNcStrO4P2efCFw+nCsdouALQpLP5EhFBRaqHrz7cn3NQV9x1/kzFe7BQ9GF1dpvQilQp3oW40lB4tYhhtnBooQjZGw6FsVjaeuL0Mz65ZLLoCxB05vEnkMqT1h1QG42o+5zMYDAYj8pGtHYbnedTX12Pjxo3YuHEjZs2aheuuuw5XX301kpOT5ZoGIwo4cbaLbJxvXVFIMhZDWtRsiEtdsq3Wn5WyxD8UAvn2CDv+T79+MKiKi8mZiVi9Yi7pgtcXalikUiEIdb7aCqjawsQiGKeuX7UIRTnG4QjZkiITLDYHOntssNqdiNfFIi2Zsl3MEzm8SeQ0pPWHFAbjaj0PMhgMBiM6kKUS5Oc//zkuvvhiABhOfjly5AgeffRRLFq0CHfeeSf+9a9/jTFLZTBGY7E5sLeyhWSsPZWsRDZSUKshrhQl22r9WQG6Ev9gCda3R8yOf30rbatKQ9v54a/Vskil4u//PoVTdd2oa+kdc+6kqHygwlcqiEGvRW5GIqblpSA3I1HydkiKSiV/KGGG6g0pDMbVfB5kMBgMRuQjy1Xhe9/7Hr73ve+hpaUFH374IbZs2YITJ04AABwOBz799FN8+umnSEpKwrJly3Dttddizpw5ckyNEWFIUSLLfEHUj0FPe6qK19HcYEvxflSz+S+FGWkoLCj2bwrpTrg7/vXEP0tdSy+m5Q2ZraplkUrFoap2HKpqBwCvhqRiKh+oUUsqiJSVSkr49IxGKoNxNZ8HGQwGgxH5yFIJIpCZmYn//u//xrvvvouPPvoIt99+OyZPnjxcHdLT04M33ngD3/ve95h/CMMrrER2fGKx0f6drHaa95EU70dKf4VAyRKhItaMNFQuzA/P/yeUHf9ey0C40/NKn3WkQkINi1Sp8GZIGm7lg1Rs2X1G6SkAkM6bRElDWgHqc4yAms+DDAaDwYh8FKsPLCgowP/8z//gf/7nf1BRUYEtW7bgo48+Qnv70C5TXV3dGP+Q7373u0pNl6ESWIns+ESt4pdU70fq2F1Kwo0fDYfjZzsl9+1JMsSRjpcYP7LYotzNVjOCIelDK0tDrnyQEqHFTA0LYCm8SZTy6XFHinOMgJrPgwwGg8GIbGStBPHFzJkzsXbtWnz++efYtGkTVqxYgfT09OEKkcOHD+PRRx9VepoMFUC588VKZCMHtYpfUr0f5UiWEEOo8aPhsreyRXLfnlzinyEvM2n4a7WkpsiBYEgqVIT4q3yQC7WmglB6k8jt0+OOlOcYQP3nQQaDwWBELqoQQQQ4jkNpaSmWLVuGZcuWwWAw+HVGZ4w/WIns+MRkjAfVOkpDKH5J9X4U23YSTLKEWIpyjHj2p1/DD6+dIZmYGO4i1mJzoK6l16eJpzu5GbQiSE76BI9/K7lIlRt3Q1Kh8uHBW+fh9cevxl03zUacVv5bjmhveVTKkFaOc0wknAcZDAaDEZmoohdgcHAQu3btwkcffYTt27ejt7d3+Hs8z0Or1eJrX/uachNkqApWIjv+MOi1SEnSk+zqpiTqSMUvqd6PQtvJL1/ahwGnK+hx4mI1QSVLiKW6wSxLy0Owi1ie53G0pgNbdp3B3soWjxYUbyaeAga9FjMKUnGsVnz0dnFB2pj3ltxmskrjzZC0qaMfL753FAOO4N/HVER7y6NYQ1ptrAYch5D+NsGm11AQbvudnHNkMBgMRuSh6N1BeXk5PvzwQ3z88cfo6ekBAI9Iu1mzZuFb3/oWli9fjuTkZKWmyVAZFIsKViIbWVhsDnT10pS1d/XaSH0CSgpNyEwzoKXTEvYYWWkJPt+Pg3xoC8dQjw+HQ1VtsniCAMEtYgMJMoKJ566KJuRlJuKeUekbK66ajp/9cY/oua64avqYx9SWmiIHW3afGRZBeJ7H068fVORn54Bx0fIoVihITIiTJL2GCikTdhgMBoMxPpFdBKmoqMCHH36IrVu3DpugugsfkyZNwrXXXovrrrsOkydPlnt6jAhA7KKClchGHh1mK3gib0meh+qikXmM/eGqG8x49P/2YjBETWNwEHj0//Ziw/9cLskioLrBLJsAouECL2JDFWRGm3gCwMyiiUhLFldplJas9xnHGm5VT6Tibkh6tKZDsSqY6Laj9USsUPDcmsWorOnEll1nsKey2aOSKkbDYUFJFpZfOgXFhWmKXDsFnxk1z5HBYDAYkYMsIkhVVdVw+ktjY+Pw44L4kZiYiKVLl+K6667DJZdcIseUGBEOK5EdX6g1HQYAjtZ0iKoCAYCWTotHCwHP8/jlS/swGGaqyKBr6Pkvr7uKdDEg967+RV7aS9wJV5ARTDzXr1o0fC7Qxorzq4iL9e9bkJhAm0KjZlwuHpU1HTAm6vHWp6cVnYvaBE8pESMUSJFeQ00kzJHBYDAYkYEsIsi3vvWt4YutIHzExsZi0aJFuPbaa7FkyRLExY2fG0QGDcLO11N//RL1recDHp+XMQH3fO9iJoBEIGpNhwGAj3adJRnHvYXgyOk20f4nnT02VJxux6xp6RTTAwDZd/V5P+U/YgUZwcTz2TWLSYSs5s7+MV4Yo+c6HqpABB5/qVzpKQCIfmPU0VAIBQa9VvWCQiTMkcFgMBjqRbZ2GOFm9qKLLsJ1112Hb37zm0hNTZXr5RlRDIdgd7pZeWykIkTRusKsjHCHMhrZYnNgT2UzyVjuLQR/fv84yZj/98ExPPtTOhGESvAJluNnunz6t1AIMoKJpxRCljtKtoSMd9wFT4vNgQ6zFbaBQejjYmAyxkf1QpoJBQwGg8FgeEcWESQzMxPXXHMNrrvuOhQWFsrxkoxxQMheAK1jvQAYkYEQRUuRwkIZjdxhtpIIM4BnHOzZ5t4ARwfH2aZeMhNYSsEnWPz5t2zZeYbkNf7xeTX2n2gjGctdyHLnzU9OkYzPCI0YDYfUJB0qqttDTg1iMBgMBoMRvcgigmzfvp3dXDBIofQCYEQGaoxGlsKr5HRdN+mY1fVmzJw6UfQ4lIJPKHT32pCbkejxGKUgU36slcxAUxCy3EWQfusAjlR3EL0CIxSKC9Nw/3M7w04NYjAYDAaDEZ2Ic4ILEiaAMCih8gLw5zfAUB9CNLIYqKORpfAqqWnsIR2ztolmPKXiXW2Osa9LmhZEM8wwoz0o9hyVt3qGMcKJM11BtyEJqUGHqmiqgvxhsTlQ19KLU3XdqGsZqtZiMBgMpXDZLRhor4et8TQG2uvhsovzyGIwIgHZI3IBoLe3F01NTejv74fLFbxR3Lx58yScFSNSoPQC8BVpyVAfaoxGlsKrxEFsnjngRUQIB2rBJ+jX1Y59XXOfXYGZBMdo093tXzYoNJPxDcchZCNaKSsFeZ7H0ZoO1pYTgYw3LxnG+IDnedjOVaL3y63oryoHeLfzJadBwvT5SLp4KfSTi9k5iRGVyCqCvP/++3jhhRdQW1sb8nM5jsPx4zRmgYzIRmoTQ4Z6UVs0skGvxYIZmdhNsNs/vzgTBr0WWSYDwcxGyDJNIBnHZIwHx4GsAiNYUpLGmtiqOfHD3XTXYnOgsqZTwdmMT8S8T91Tg6hu/KsbzHj69YOsLSeCYKIVI5qxN9ei7YNn4Giv934A70L/yT3oP7kH2om5SL/mbuiyCuSdJIMhMbK0wwDAhg0b8MADD6C2thY8z4f1P4MhRRoHI7IQopGDbY2ZnJmI9asWSWaGe+EUmpSri/KH2nQumkLXrgMAF+ankIxj0GuR6kWQkBKNjyQfyohjKekwW+Fi1y5Z0cZqRAt1QqVgIIJpazlU1Ya1G337koxGzrYchneqG8y4c8N2PPz8buyuaB5T6SeIVg8/vxt3btiO6gazMhNlMMLAUnsETa+u8y2AjMLRXo+mV9fBUntE4pkxGPIiy53kl19+iT//+c8AhtR1g8GAWbNmwWQyITY2Mm5mGepAijQOVtYaeRTlGPHcmsWorOnEll1nsPtok8fCR8MBC2dmY/mlU1BcmCbpTt2Js11k43zrikKYjAYkJcSht39A9JhJCXEwGWkqSyw2B7p7bSRjBcvCYu9JPsZEnazzCAX3c4pSPirjlcmZiTAm6nDktHgjWl+VgqFUCNQ09jAD7wgj5NS5FpY6x4gc7M21aH3rN+AdoV3LeYcNrW/9Btk3P84qQhhRgywKxBtvvAGe58FxHG644QY8/PDDMBhoS74Z4wMp0jgYkQv/1X8cx3lWi3EcwA99X0osNgf2VraQjLWnciRe9cYrp+KlD46JHvM7V04lmNkQQ1UNZMMFxfIy70k+JmO8vBMJAfc0G6V8VMYTGg2HhSVZWH7pFBRMSsL3fr6VZFxvccchtbVkJGLAOSjawJuyLYfhH5Y6x4hmeJ5H2wfPhCyADD/fYUPbB88i50dPsXMSIyqQRQQ5dOgQOI5DUVER/vd//1eOl2REKVKkcTAiD7X02EtVmfStywuw+aPjcA6GP3ZsDIdrL6fbsZG7qoE6yUcu3NNs1CzWhMvt18+EyajH4y+VS/o6GakGZKQacLSmw2t7Cwdg1jQTrrmsAPMuzATHcahr6ZWsUjDkCoFWcebdADPwlhOq1DkmWjHUiu1cZdAtML5wtNfBVncM8ZOLiWbFYCiHLJ4g7e3tAICvfe1rcrwcI4oR0jgoiPHhN8BQN2rqsZeqMkmj0eDu/5wjaqy7/3MONBq6U7zcVQ03XDnV52KioU38AlMqvKXZRBMVNR0oLjSRnYfdidFwKJuVjSduL8MDt1wC83m7T38PHsDhUx14/M/lw74MUn0ew60QoGDL7jOyv+Z4hDJ1jsFQI71fbiMah6bajsFQGllEEKH1JT4++nbFGPJi0GtxUT6NEeWFU1KZH0iEIbZcmdrATsrKpMUX5+KWZReGNc4tyy7E4otzqaYFQP6qhrf/fdqnIXZLp0XWuYSCe5qNmsWacNnzVRLSwuIskvHmTJ+I3/7P5fjD/Vfir49fjQdvmQfnoAsP/WFXyELnmaYekjkJxOtiRVcIiIUZeMsDZeocg6E2XHYL+qv2kYzVf3IfXHb1XoOlwGW3YKC9HrbG0xhorx93P3+0IksvQFFREQ4cOICamho5Xo4R5bCshfGJGsuVhcokihJ8b5VJ3/n6NJiM8Xj2b4fhGHQFHEMbq8FdN80mF0CUIFJbAdz/hmoWa8JFaBNZVpaPXRVNosf7zpXTMC1vJMFIjND54ntHoeFA4l0jfB4pKgTEwAy8pUeK1Dn292KoCWdvJ8AHvocICt4FZ18X4nTR7e3I8zxs5yrR++VW9J/cB8/VB4eECxYg6eKl0E8uZi1wEYosIsjVV1+N/fv349NPP0VXVxdSU2l28hnjD4vNgeNnaMpNj9V2spuVCIKyXJlqYW3Qa7GwOItkMbigxHsSyuKLc7FoZiYe+uMenDzb7fP5F+Sn4ImfLIRWK837ucNslWRcf/hK6EhOiJN9LsEQG8ONi/OJ1e5EcUEatLEaOJzh31hrYzWYkp2IupZe2AYGodNq8NvXvgxb6LQ7XDDoYmEhMLwWPo9UFQJiYAbe0sJS5xjRjmuANtnNZZf/fkBO7M21aH3/93B2NPg4gkf/yT3oP7kHsaYcZFz7P6JTc1x2C5y9nXAN2KCJ0yM2KQ2aKBealEYWEeSmm27CX/7yF9TW1mL16tX44x//yNJhGGHRYbb67BEPFZ4Hu1mJICjLlSmrC66+dDKJCLJsYb7Xx9/4pAqvbT0Z8Pknz3bj+gc/wn994wJ89z+mi57PaJRoB/C1q6rWTRfnII8Os2U4ljgjNTqvc/G6WFTWdooSQADA4XThv36+lTR1iEIAAYDll04hrRAQAzPwlhaWOseIdjRxtP53Gl302htYao+g5e+/ApwDQR3v7GhA4+aHkfmdB2EomBXSa3lUm1SVe1brcBokTJ/Pqk0khPTK2tTkeyHw85//HKtWrcL+/fuxfPly3HTTTZg7dy5SU1ORkJAQ1PjZ2dlUU2VEKOxmZXyi5nJlMlHOS6PX7984iH/tD83N/bWtJ9Ha2Y//+e5cmol9hRJxr752Vc3ng7s5UYITZ7tw2ewh8UOIyo0mhDaRYIS5YJAidtmgj4XFFv65XUgmqm/tI6sQCBdm4C09LHWOEe3EJqUBnIamJUYTg9jE6KzotzfXouXN9cBgiD5MzgG0vLkek259IuiKEHtzLdo+eMZ3Yg/vGq420U7MRfo1d4uuNmF4QnqmvvLKK4NSqpqbm/HMM8+ENDbHcTh+/Hi4U2NECexmZXyi5nLlv31yimScNz45hVlT093+XRWyACLwr/31yEhLIK0IUSruNdKEyuaO/uGvDXotZhSk4Vht9CRGLCgZMkRVQ4WEL6x2J3RxMbCHIZrr42KwesVccBynmBmqO77a5Bh0GPS09wHxuuhOiGJEHhqdAQnT56P/5B7RYyVML43KNg2e59H6zobQBRCBQQda3/ktcu94LuBa2FJ7BK1v/Qa8I7g2JUd7PZpeXYeMG+8PudqE4RvydBie5wP+H+xx3p7HGN9QLsQ4gO2wRQhqrQCy2ByoJFrgVtZ0DqdADA4Oit5pf23rSQwO0v3elEqo8CZUZqap9wZMOyoid8VV0xSaiTQsv3QKqSgpBTwP/Pi6kpBFc31cDB5aWYqiHOPwv5Vm+aVTlJ5C1COmasgbVrvy4hmDDovDioaeZlR3nkVDTzMsjsj0w0i6eCnRON8gGUdtWM8ehdPcKmoMp7kF1nOVfo+xN9eGJIAI8A4bWt/6DezNtWKmyHCDVP6eN28e5XAMhqSo9xaeMRq1VgBRR6A2tJ3HtLwUvPCe/4tosPzpvUrcfgPNrkFNA238aDD4Eipz0tXbZlKYneTx75lFE5GZZoiKpJhsUwKKC9Nwut6s9FQCoo+Lwe03zMQbn5zyqM7xxeTMRKxeMXdYAAFo05/CITPNgOLCNEVeezyhVpGdoRw8z+NY2ylsq96B/Y1H4HJrI9FwGpROmo2rii7HjPRpEePVoJ9cDO3EXN/tF0GgnZgHfd4MwlmpB/MXfyca500Y8ku8fo/nebR98EzIAsjw8x02tH3wLHJ+9FTEvO/UDKkI8uqrr1IOx2CMgTqhghmjRgZSR9GGC/XCtrXLgml5Kfi0vI5kvH/tryMTQfos8vtw+PprG/RaFBekkVXhUJI9cYLHvzmOwwO3zMN9z3wO52BkS6933TQbHMepokIiEE/+5UuPf6cl69Hda/PwIInRcFhQkoXll05BcWHamJtKyvSncODAbnLlQK0iO0MZarvqsHHfJtT3em/5c/Eu7G04iL0NB5GblIVV81eiIDVP5lmGDsdxSL/mbjS9ui6sRTin1SP9mrvCXnyrOf3EZbfAVk9juWCrOw6X3eL1Z7OdqxQlQgGAo70OtrpjiJ9cLGochkzpMAwGFWzHZnwiRxRtOAwQvx/tA07Ut/ZiQGTqhsCAw4X61l7kZiQFPjgAiQZlYml9CZXfvWo6fvbH3QrMyD/eSuGLcoz4wTXF+NN7RxWYEQ0zClJRXDiUqqSUP4wYOnuGbvoz0wz47lXTMS03BWnJ+oDngmVl+YqJIM2d/aSR3gzvqFVkZ8hPRcsJPLnrBdid9qCOr+9txiPbn8J9ZbdhZuaFEs9OPLqsAmTceH/I7RicVo+MG+8P2ZgzUtJPBjoaScc7X1WOpJlfG/N475fbSMbv/XIrE0EIIPcEYTCkhO3YjF+WleWTjEPZY+8t0UUcHI6c7iAdsaKGplqiMCeZZJxQ8SVUlhSmITZGfTvl3b3ebyxnTY3shez3rrpA6SmQ0NJpwR/+fgQdZmtQYmhJoQl5mcq1X23ZfUax1x4vCCI7BczINnKp7aoLSQARsDvteHLXC6jtoqnglBpDwSxk3/w4tBNzgzpeOzEP2Tc/HrIhp725Fg0v3oPm136B/pN7xybTfJV+0vzaL9Dw4j2Kel04RHqBjKZjyx9hqT3i8ZjLbkF/1T6S8ftP7oPLbhked6C9HrbG0xhorx9+nBEYtgJkRBRsx2b8IixG6lrC9+EQoi/poF6E8zD3hdcr6ovuHpoWMpPRgLRk/fCOulz4EioraztV2V5ic3ivDlLaX4IS6rZEuRlwuvD4S/vwm7su8/AA8QbHcbhnxVys3bhTkbQY6khvhneoKn6YkW1kwvM8Nu7bFLIAImB32rGx/BVsWPqziPBq0GUVIOdHT8NWdwy9B7YOLc7dRQpNDBKmlyLp4m9Anzcj5J8p0tJPyP9iLgda3/oNsm9+fLh6xtnbSRNRDAC8C+dP7oO1+gD6T+6DZ/Mwh4QLFqiiwkbtsEoQRkRh0GtxUT5NPvmFU1LZjWUEwXEcbrxyqqgxbrhyKukFQUdcmaSLi4UxkVaYS0mma1341uWFZGMFg4bzneD00a6zss4lWPRa7+8JynOXEny05+zw1+a+8BYKasLhdOHXm/cHlTxXlGPEQytLFfFCESK9LTYH6lp6caquG3UtvYqlNUUrFBU/9CI7Qy6OtZ3y6QESLPU9TTjefppoRtLDD1gRY0hG8oJvIfvWJ5D9/36F7JW/Qs5tv0f+vZuQcf0axIexiI7E9JNYYwb5mIKJqXCNcQ3QbiB1fPjcUIXNmIpkfrjCpv5Pq1majB9YJQgj4oj8fVRGOPA8j7f+Le4G4+1/n8bX5uaQCSEZqbSmXhmpBuRn0ZbezyS8KZ+cOSHwQYSkJHn3bLDYHNhTKe6GVSpSknyLWJF87nKvSIgWL6WWTguOVndg5tSJAY+dMz0d61ctwlN//RL1redlmN0If3ynApW1nR5VRBoNh4XFWVhWlo+SQpMqdvssNgc6zFbYBgahj4uByRgfMRsNYit+9HExWL1irir+DuMBi8OKLosZNqcd+lgdUg1GGLThC/4fV39OMq9t1TswI129sejBenRo0yaFPX4kpp/EmcL7eQPhbmKqiZO/8tzZ0YDGzQ8j8zsPKlJho3aYCMKIKCw2B46fofE4OFbbycqMI4ijNR2iWmEA4FxLH6nRYG4GrWCRkz4BBr0WcbEaEnPUOK2GxBRV4OUPaNzTg6W71+b1M9phtqqyrYTzU7lCee5SAqEiwaDXRpWX0uufVAUlgggokdhSUT3WJ8jl4rGrogm7KpqQl5mIe0bF+8oFz/M4WtOBLbvOYG9li+qFGn8IFT9PbCoPSQjRx8XgoZWlivz+xxNSxdZaHFaUNx4mmWN5w2FYHFZRgoxU2Jtr0fbBM77TSb7y6Og/uQfaiblIv+bukI1QIzX9RKMzQJ93EWx19Pc4golpbFIawGnoWmKCxTmAljfXY9KtT4T894x2WDsMI6LoMFsRRPVyUPA8ZPc3YIQPVftDJBgNfn1ecIZlgVhyCV1sn8XmwFmRIlSouHx8RpXwZgiGGVPSfIqqlOcupRAqQIyJOoVnQkdlTScqTrcHbDE5VNWGtRt3oq5V3s9AMNS19GHtxp04VNUm6+tWN5hx54btePj53dhd0TxGmBSEmoef3407N2xHdYNZ1vmFg1DxE2xrzOTMRKxftQhzpqdLPLPxTW1XHdZsfRyPffY77Gs45CGAACOxtY999jus2fp4SCalXRbzmPHCxcW70GU1k4xFiaX2CJpeXRe0QCF4dIw29wwEZfqJ3BgX3STJuIKJqUZnQML0+ZK8RkAGHWh957dBtX+OJ5gIwogoWETu+ISy/UEo66eA2iBSWPAvLKFJKlhYkkkyDgBU13eTjRUK3j6jSngzBIWfzUe1CjehYO6z41RdN2wDTgXqIaTj4T/uxqont2PFun/iV6/sR0V1u8fNYnWDOeTqALmxDQziiU3lsgkNw6JQkMKoUkJNOBTlGPHcmsV44vYylM3Mhkbj+W6P0XAom5WNJ24vw7NrFrMKEImpaDmBR7Y/FbRnhxBbW9FyIqjjbWGaofocz6EuzyS5PDqkSj+Ri/j8Ykm8QcC74OzrAgAkXbyUfvwgcZpbYD1Xqdjrq5HoqWlljAtYRO74hLL9wb2sXyxSiXLb9tJE7W3dV4fZ02ku6sfPKCOCePuMqjVp5fiZLp8tdqoVbkLg8ZdobnDDZcPdl4HjOByr7cRLHxwjH99bi0nhpGQ8/fpBVQsgAraBQfzu9YN4ds1iSVtPwhWFBKFm/apFqhcOOI5DSZEJJUUmWGwOdPbYYLU7Ea+LRVqyd68iBj1iY2sfXXwvClL9V0TqY2kr2/Ra9VTKyenRQZ1+4uzrQpyO1nfNHxzHIeP6NWja/BB4J63xtMs+tGGmn1wM7cRc0S1D4WL+4k0Y8ksUeW01wipBGBGFsPihgEXkRg5qrQCSQpRTa9VLz3n5d7d8fUYNei0WFtNUy1AiCGzeoDx3jVcMei2m5aXIct4WKhfe+axatBeRnAi+R1LB87woUUgQaiKpLNug1yI3IxHT8lKQm5HIBBCZoIqtDfReSzUYoeFolkMxnAap8UaSsSig9OgIBHX6iSAcyIkuqwAZ31kLLob2M67RDXnEcByH9GvuBqdVZu1hqzsue4WNmmEiCCOioFz8LCjJYjczEYJaK4CkEOWkqHqhIHmC/Ltb/j6jy8ry5Z1MkPgS2NQq3EQSZ5p6cKquW7YFtG1gEJu3yGsGTIGUvkeUBtUMhj/kiq01aONROmm2qNcRmJczW1WmqHJ6dFCnnwjCgdwYCmYh83s/pxtQE4PYxNThf+qyCpBx4/2KCSEDnU2KvK4aYSIII+KgWvwsv3QKyTgM6TEZ40FV3a3xk+ARKlKIcmqterloSgrJOKHg7zNaUmgK2rxQTvwJbGoVbiKFJ//yJX76+8+x4bWDsr2myjqugoKyAmw048mgmqEslLG1gbiq6HKS11padAXJOBTI7dExnH5CwSjhQC5cdgsG2uvBxWihz59JMqah6GI4ezthazyNgfZ6uOwWGApmIfvmx6GdSGOCHwqO7lbZX1OtMEMERsQhLH7E7EZNzkxEcWEa4awYUmLQa5GaqEdnr/iqhpQk2n7uZWX52FUhXlkXFvxqrXopypVXBMlMM/j9jHIch3tWzMV9z3wO56A6VqqBWuwozl0MRiBcLh6HqtpQNmsS6bhStOqxakyGN+SOrZ2RPg25SVmiKk9yk7Nx0cSpYT+fGrk9OoT0k/6Te0S/XML0Umhk8gPheR62c5Xo/XIr+qvKySNsLaf2w3KqfOQBToOE6fORdPFSTPrvp2CvP47eA1uHBCv319bEIGF6KWJTJ6Fn11tk81F5UrmsMBGEEXEIi5+1G3eGtWuuj4vB6hVzJTWOY9BisTnQ1UfT1tHVayO9+aYW5ShNPyl9bwx6LTJS49HaJU+fLhdE/khRjhH/75oZePE9dTieB2qxE3vuYkQ2t18/ExXVHdhT6Rknq+GACYY49PYPkL3WU389CINeSxrdqlaDakb0IUVsrT8RhOM4rJq/Eo9sfyosDxJdrA6rSm9V1X2lEh4dSRcvJRFBki7+hugxgsHeXIu2D56R2Kh01DmTd6H/5B70n9wD7cRcpF9zNzJuWAOX3QJnXxdcdis0unjEJqZCozPA1niaVASJNbI4bwHWDsOISIpyjLhpybSwnnvTkmmqd6ZneNJhtoLKBoDnQeaTAYwsbMOt4BgtyqnZ90ZOI+Hmzv6gfAOWzPPv/C8nyxbmBzymKMeIh1aWRkVaDCM0SopMePDWeXj98avxh/uvxD0r5iDLlAAXD1IBBAAGnC7yyFy1tuoxog8lYmsLUvNwX9lt0IWYFqOL1eG+stsCptDIjRIeHUL6iRi0E/Ogz5shaoxgsNQeQdOr6xRLagEAR3s9ml5dB0vtEWh0BsSZcqCfNBVxppzhSpg4E2VFH4e4NNoKwUiGiSCMiKS6wYw3Pq4K67lvfFxFemPIkB5zH+0NUTdBW4074S5s9XExeGhl6RhRTo2+NxabAyfOyhuTG4xvgEGvRX5WkgyzoWPO9HTcceMsaGPZJXi84F6VZdBr0WG24vm3K9Dc0S/Za1Insai1VU8tWGwO1LX04lRdN+paeiXzZRkPKBVbOzPzQjy6+F7kJgW3EZGbnI1HF9+LmZkXipmeJCjh0SE2/YTT6pF+zV2SV9TYm2vR+tZvwo4OpoR32ND61m9gb671+n2NzgB93kUkr6XPu0i2NqNIILquQIxxAc/z+PXm/RhwhlcqOeB04TebD+CFtV9XVekiwzfUO4Y2B30rwpzp6Vi/ahGefv1gUK0xkzMTsXrFXK9VSWr0vaGsxgmWYH0DEuLVUVL/0Z6zmDl1YsDjDlW14Q9vHYEjzHMYI/Jwr8qqbjDjiU3lsrRECUksJUUm0WOptVVPSXiex9GaDmzZdQZ7K1s825w0HBYWZ2FZWT5KCk3sfiMEhNhaipaYUGNrC1LzsOEb63C8/TS2nd6B8sbDHvOI4TSYlzMbS4uuwEUTp6r276qUR4eQfhKqyMBp9ci48X7osgrCnWZQ8DyPtg+eUYUAIsA7bGj74Fnk/Ogpr+8n46Kb0PLXX4h+HeNl3xE9RjTBRBBGxFFR3YGWTnE5182d/Tha3RHUgoWhPNQ7hnqtNK0IRTlGPLdmMSprOrFl15kxvf8xGg4LSrKw/NIpKC5M83nzpEbfGyU8LILxDRiqUOmScVa+CUa0kXMBzFAPQlUWz/N4+vWDsv79t+w+QyKCCK16FEbQ0RBRX91g9it6u1w8dlU0YVdFE/IyE3GPD9GbMRYhtnZvg/gkqHBiazmOw4z0aZiRPg0WhxVdVjNsDjv0Wh1S442qisH1h1IeHUL6SbB+G9qJeUi/5i7JBRAAsJ2rpG+B4TSiDVUd7XWw1R1D/OTiMd+Lzy9GrDEDTnP4yS6xKZljxnb2dsLeUotBSx9iDInQZRYMVRCNE5gIwog4wm2DGc3rn1QxESRCMCbSlsamJEm3A8lxHEqKTCgpMsFic6Czxwar3Yl4XSzSkoNPphFabEJdMPtqsRGLUh4WgaqAKM0axRJItOF5Hus37WMCyDjDvSrraE2H7OlAlEks1GlYkcqhqraQzs11LX1Yu3EnHlpZSmpWG81cVXQ5iQgiNrbWoI2PGNFjNIJHh5hFf7geHbqsAuT86GnY6o75TT9Juvgb0OfNkK2ipvfLbSTj6PNLkHLF9+DobET3Z69h8Lz4duHeL7d6FUE4jkPG9WvQtPkh8M7Q2+y4WC0yvv1TcBwHl8uF3vIP0VP+AQb7xm4gxSSmIrn0GiSVfhMaTXS37DIRhBFRWGwOVNYGNksMhsqaThbRFyGYjPHgOJC0Y2g4eQ0+hX78cPryKVtsxEJZCh8KgaqAjpxul2kmweFPtHnytQNo61ZPCW60o+GA4oI0VARhsCsVo6uyPtp1VvY5UCaxqLFVT27CreayDQziiU3lWL9qEasICYJojK2VG8Gjo+nVdWG1f4j16OA4DvGTixE/udhn+omcuOyWITGGANvZo2hpeAS8k87Uuv/kPrjsFq+/F11WATK+sxYtb64HBkMQQmK0yPjOWuiyCtB39HO0b9kIDPq+Txns60LXp6+g67PXMHH5KiSWXB7OjxIRMBGEEVE0tNHuoDW0nce0vBTSMRn0CGXYu4+GfzMkIHUZNnWPOFWLjVgoS+GDhYN/waq6wYz/+4c64nED8cd3juCLQ/L97iINbSwHh5NWYHPxwOJ5uYqJIKOrsiw2B/ZUij+HhQOVr5IaW/XkRGw7k2BW++yaxRH7O5CLaIytVQK1eHRodAbEKWzK6eztFN224g6lADI0oAvOvi7/v6dQ389fHd+96x10f/Za8M8bdKL9/d/D2duBlLLrQ3vNCIGJIG50dHTg9ddfx86dO3HmzBlYLBZMmDABU6dOxde//nXcdNNNMBh8vzFdLhfeffddvPfee6iqqoLFYsHEiRMxd+5cfPe738W8efMCzoFijGhGrBfIaFq7LEwEiRCWL5pCIoJ8s0y6nlMpe8R54b9RFSUungf4oe9LDVUpfLD4+4l4nscvX9oHlXTC+GX7l3XYokAFQKSg0XBYXlaA93bUkI+dm54ounIhHLJNBtx38zyPz7eSrVuUvkpqa9WTE4p2Jkqz2mhHiK19ctcLIQkhao2tVQo1e3TIiWtA/ZWYLrvV6+NCog1CFV6cA2h58wm/1R/+6P7sNcQmmaKyIoSJIF/xr3/9Cw8++CD6+jwvbt3d3SgvL0d5eTk2b96MjRs34sILx0Zh9fX14Y477kB5ebnH401NTWhqasKWLVuwcuVKPPjggz7nQDEGgxGtlBSakJlmECWEZaYZJCvDlqpHPJCwwvOQzXyPohQ+VHyV8R853YbOngi4oXG58Ps3Dis9DVXjcvGSCCDAUAXTjVdOxVN/Fe8tECwaDYenVl+BhPi44ceECjElkCKJJdRWPQCYPjkFMTEceJ6P2N15qnYmKrPa8YAQW7tx36agWmNyk7OxqvRWJoCMQq0eHXKiiVN/IpVGN9Z/RnSiTZgCiED7lj8gYcaiqPMIYSIIgPLycqxevRoOhwNarRY33XQTvva1r8FoNKK5uRnvvvsutm/fjsbGRvzgBz/AO++8g6yskQxxnuexevXqYfFi0aJFWLFiBUwmE06cOIEXX3wRjY2NePnll5Gamoof//jHY+ZAMcZ4ICOVtpSOejyGuuEgzUVdqh5xtZnvCaXw9z/7hWzxrr7K+P/vH8dkef1QGb3j/v4XtRiMhHKVKCRGwyE1SYe3/n1a1tddWJLlIYAEEjKlRqoWQPdWvb99UoUj1f5FniOnO3DkdEfEJqVQtjNRmtUGwmJzoMNshW1gEPq4GJiM8RHnhRYtsbVKozaPDqlw2S1w9nbCNWCDJk6P2KQ0aHSGoeQTgiQXydDEIDYxdczDkiTahMKgA737t8A4/xrl5iAB414E4Xkejz766LAA8uc//xnz588f/v7MmTOxdOlSbNy4Ec888wy6urqwYcMG/Pa3vx0+5oMPPsDOnTsBANdffz3Wr18//L3Zs2fj6quvxn/913+huroazz33HK699lpkZmZ6zINijPFAbkYi2VgcgJz0CWTjMaTlaA1NNDJ1GbJUPeJqNt+T8/bSWxm/xebAOYUWlIEYveP+7mfVCs2EsaA4CzWNPbKLD+7JJ6EKmVLPhxqO4+AcdKGqLvhkhEhNSqFsZ6I0q/UGtTeVGoiW2Fq1oAaPDkp4noftXCV6v9yK/qpyT6GD0yBh+nwkXbwUhmmlsFTtVW6iftDnXeRViKJKtBFDz74Pok4Eia66ljA4fPgwqquHblK/+93veggg7txxxx2YNm0aAODjjz+GxTKyGHv55ZcBABMmTMADDzww5rlGoxGPPvooAMBut2Pz5s1jjqEYYzxg0Gsxo4CmnWFGYVrE7YaMZyjLkCmh7BEXoBJWwkmk8YcwrwGZqkAAIF43Npr3dAgLLrmx2EZc2zvMFnT1hm7ox6DhgskpsqexZKUlDLfchStkUiJ1EotYsba6wSzNxCSA+u9IZVY7muoGM+7csB0PP78buyuaxwg3gjfVw8/vxp0btkfU30DAoI1HTlIWitLykZOUxQQQleCyWzDQXg9b42kMtNfDZaf18fOFvbkWDS/eg+bXfoH+k3vHVnrwLvSf3IPm136BgRZpWi8psNWfgKX2iMdjlIk2Yhjs6xwylo0ixr0Isn///uGvv/71r/s8juM4lJWVAQAGBgZQW1sLAKivr8fx48cBAIsXL4bRaPT6/EsuuQRTpgztxmzdutXjexRjjCdWXDWNZpz/mE4yDkN6pChDpkIKcUYKYYUCinmFitU+duFx4qx6RZDapt7hr2saehScCWP30SbZ01gEg2KxQiYFUiexqFWslQp93FhBVgyUZrUCh6rasHbjzqDP00JVzqGqNvK5MMYHPM/DevYoWt9+Emd/eysa/rQaTZseRMOfVuPsb29F69sbYD17VLLPuaX2CJpeXRd0u4izpx3y1rOGwKATrX9fD3tz7fBD1Ik2YrC30m4iKs24F0FmzpyJn/zkJ/j2t789LDD4wv0DbLcP7e59+eWXw48tWLDA7/NLS0sBAI2Njairqxt+nGKM8cTMoonITBNXwpeZZmCmZBGEFGXIFEglzqi16kXuXXXA+25pz3n1Vlf0us2tz0Icn8cIiRNnu2VPY2nptKCyplMRwdAdOZJY1CrWSoXJGA+NhmbxJIVZ7XiqymGog1AqMBpevMdjcU/1+qFG/341MdJ5UMI7HWh997fDa041JdoM9vcGPiiCGPciyIIFC3DPPffgV7/6VUCPjX37RsqRJk2aBADDrTQAkJ+f7/f5ubm5w1+fPj1i1EYxxniC4zg8cMs8aGPDe/tqYzV44JZ5EdMHy1BvGbIU4oxaq14o5xUK3nZLjYk62ecRLLq4kfkmGuL8HMmIVrbsPqOIYCgwOTMR61ctCttvw2JzoK6lF6fqulHX0uvzHKImsTbYOYvBoNdiYXFW4AODgNqsdrxV5TCUJ9QKDEd7PZpeXTem3SNcRCemAFBrRYizuwXWc5UA1JVoE5OQpPQUSBn3xqjBsmPHDpw4cQIAMG3atGHBpKWlZfiY7Oxsv2O4J8q4P49ijPFGUY4R634wH798aV9I/gRxsRr87AfzI86Vfryj1jJkKcQZtZrvUc4rWHztll6YnyLrPEIhOWFE+CjMSVZwJgyl2HO0WZLFZJxWg6tKJ6Ox/TwOn26H+0vEaDgsKMnC8kunoLgwLWSRP1QjTaWTUiw2B9q7LThW24U9lc2oqO6QxfxzWVk+dlU0iR6H2qyWsiqHVckyAhFuBQbvsKH1rd8g++bHocsqEDUHmsQUHpqEZLj61de6av7i7zDkl6gqsUeXIZ3JthIwESQIurq68Mgjjwz/+4c//OHw1z09Ix+chIQEv+MYDCNv5L6+kYsVxRjB0NTUhKam8C7eVVVVYT1PSuZMT8ev77oMT/31S9S3ng94fF7GBNzzvYuZABKBCGXIFItwyjJkKcQZarM8qvGU8DbwtVtalKteEcQdk9GAtGQ9WfsVIzKQQiycnJmI1W6xshabA509NljtTsTrYpGWrA9b7AwU4SsYae6qaBqOt42L1cgu1roLNUNCk/8xR8+Z4tpfUmhCXmaiKMFBCrNayqocJoIw/CG2AoN32ND2wbPI+dFTosRJqsQUV38PYpJMGOz1H/EtN7a6Y3DZLbKZywYiJjFtKGI4imAiSAD6+/tx++23o7l5aMejtLQU11577fD3BwZGer71ev8LK/fvuz+PYoxgePvtt/Hcc8+F9By1U5RjxMb7rkRlTSe27DqD3UebPG6MNBywcGZ22LtjDHVg0GuxoDgTuyvE7zwuKKYrQ5ZCnOkwWwlmNgJV1Qu14BMMvnZLDXot8rOScLZZff2pNoenWHTdFYX48/vHFJoNo6QgFUdru5Sehihuv2Emrl6Y73H9Mui1JOexUCN8BSPNW5ZdJPq13Qkk1gYSavxBGcnLcRzuWTEXazfuDEsYlsKsVumqHEbk47Jb4OzthGvABk2cHrFJaT4rECgqMBztdbDVHUP85OKwnk+dmDLY2wFwGtUYkAoMdDaqxr4kOcricQEmgvilr68PP/7xj3H48GEAQGZmJp566iloNCNeFDExIwuDQBc19/JY6jHGMxzHoaTIhJIiE+nuGENdXJifSiKCXJifSjCbIYQecYryaKHqwWSEKqteTMZ4aDhAro6YQLulP7x2Bta9sEeeyYRA7yjT1msWTWEiiILMnp4e8SIIZTuHO2KMNDdtOU46F39ibahCjTcE88/1qxaJrggpyjHioZWlIc9JKrNatbZQMtQNz/OwnatE75db0V9V7ikAcBokTJ+PpIuXQj+52OP8Q1WB0fvl1rBFEEkSU1QmgACA09yGuIl5Sk8DiNEiad5ypWdBDltF+6CtrQ0333wzDh48CAAwmUx46aWXMHHiRI/j3NtTbDb/pWFCogwAxMWN9I1TjMEYwqDXIjcjEdPyUpCbkcgu5FHEiTM0C5njZ2mTCJaV5ZOMI1Q9qNV8z6DXIiVJHoOuYHZLZ02dSJ6uQEFLl2fp6jGi9y0jdLJMBhytkb/EOUbDgUqzkCJFBBBvpDngoGuP8/czhivUeIPS/HPO9HSsX7UIeZmJQR0v1qzWH2o1DgcAi8OKhp5mVHeeRUNPMywO2kpHRniEm+pCWYHRf3Jf2K0eakpMkRKex1ALCqfscn3i8juicuOdVYJ44eTJk7jtttuGjUczMzPx0ksvobCwcMyx7h4eVqsVSUm+nXMtlpEPe3LyiGEexRjBcMMNN2DhwoUhPUegqqoKjz32WFjPZTDEouZyXyl6xNVovmexOdDVK/2NR5xWE9RuKcdx+NkP5uPe3+3w6w0gNw6H5wJCyZSQ8U5zhwXNHfL3Uy8oyQJ4kFaIUaN0hK87vn5GsUKNNyjNP4tyjHhuzeLhdtw9lc0eFRlizWqDRW3G4TzP41jbKWyr3oH9jUfgcltgazgNSifNxlVFl2NG+jTWoqwAltojIZmaCqkuGTfej9jEVLqKCd4FZ18X4sIw/lRTYoqUaFMyoNEZkDB9PvpPKlP5mvK1/0JiyeWKvLbUMBFkFDt27MDq1auHxYaCggL83//933Ak7mjcH29ubkZGRobPsQVfEQAex1GMEQzZ2dkB02cYDDXSYbaSLXR5HqTlvlL0iKvRfI/yb+CXEF8jRsPBOageFSQ9bcLw10rFCjOUZfmlU8CDV52Q6Y6axDlfP6NUQs2WXXTmn2pox1WTcXhtVx027tuE+l7v5z0X78LehoPY23AQuUlZWDV/JQpSVVDuP04Qm+pi+saPSOfjsodXGTRcHSFVCwvHQfndFQ5xaUNrtqSLl5KIIMZLr4d53/vAYBDVXjFaTFx+R9QKIABrh/Hg3XffxR133DEsgMydOxevv/66TwEEAKZOnTr8dV1dnd/x6+tHjISKiopIx2Awohk1l/sCIz3ioe7I+eoRF4SVcHf4pDDfkysdZsDpwhObylHdYPZ7nLBLrCYBBACmusXiKhErzFAWQXwUhEyKsahRkzjn72eUSqjZc7QJFpuDfFyl2nHV0kJZ0XICj2x/yqcAMpr63mY8sv0pVLScCOv1GKFBkerSvfMt0jlpdPFhPm+oOkI6OGiSlE1Jips0bdicVj+5GNqJuaLG007MQ8rXvof8+19H6pKViEn07o8Xk5iG1CUrkX//X6NaAAGYCDLMO++8g7Vr18LpHFocXX311XjllVdgNBr9Pm/27NnDC40DBw74Pba8vBwAkJWVhZycHNIxGENYbA7UtfTiVF036lp6JbnRYcgPRQ+31Ag94rkZEwIfjKHIZn894tTCiljkTIcJpndfTeX87sTrRhYQSsQKM5TDXXxUo5ApQC3OxWnDu5X09zNKKdS4vqoGjCaovalCpbarDk/uegF2pz3wwW7YnXY8uesF1Hb53wBkiIci1cXZ3QwywyNOg5gJ4cfdJ128lGYe3uBd0GiUbZYYaKxC69sbYD17FACQfs3d4LThVWlxWj3Sr7kLHMdBo9HAOP8aTL77ReTd9Sdk3LQWpuWrkHHTWuTd9SdMvvtPMM6/Jio9QEYT/T9hEOzfvx8/+9nPhm+4v//97+Ppp58Oyng0KysLs2fPBgBs27YN58+f93rcgQMHcObMGQDA0qWeH1yKMcYzPM+jorod618px4p1/8SqJ7fjp7//HKue3I4V6/6JX72yHxXV7RGxkGZ4J5LahjkEO9nAx6nJfM9kjJf17yD07vtCTeX87rhXGSkRK8xQBm/io9qETAFqcW7l8ovIf0apq6i6ZfA3khMlK494nsfGfZtCFkAE7E47Npa/wu7RJIYq1YWuN9mFps0PD5uuhgpFdYQ/nOYWycYOFndzWgAwlt0Q1jjGshugyyoY83hsUhoSpl6CpNlXImHqJUNtRuOIcS+CnD9/Hvfddx8GB4duCm644QasW7cupN2Xm2++GQBgNpvxyCOPwOXy7FHr6enBI488AgDQarX4/ve/L8kY45HqBjPu3LAdDz+/G7srmsfcNLlcQ33ZDz+/G3du2B6wxJ6hVtSvghyqasPajTtR1xpcdUJdax/WbtyJQ1Vtfo8TzPeeuL0MZTOzodF4/i5iNBzKZmXjidvL8OyaxZItnAx6LS6aIu8FcsvuM14ft9gcJH4LUuBuKmgyhlfqy4gs/ImPahIyBajFudnT6H9GqauobITpNmpAycqjY22ngm6B8UV9TxOOt58WNQbDN5SpLpQIpquW2iMhP5fjOFHVEZGEo70ejZsfhnnnm2E937zr7bDFpmhm3Buj/uUvfxk2G504cSJuuukmnDgRuD8xKytruFVm+fLleOedd7Bz5058+OGHaGlpwS233IKMjAxUVVXhhRdeQGNjIwDgrrvuQm7uWOWSYozxxqGqtpCi8+pahhadD60slfQGk0GP2tzvRxNujKNtYBBPbCrH+lWL/IoXajDfA+SXonwl+XSY1RyzyHYzxwOhJH9ImSJisTnQYbbCNjAIfVwMTMb4gOcDKYw0DXot6c8odRWVXht9VVpC5VGo1yKxlUcfV38e1vNGs616B2akTyMZi+GJs7dTOhNRkfAOG1r//iukXX0b9FmFiE1KG/bCCIQuqwAZN94fltlrxOEcCPvugnfY0PbBs8j50VMe516X3QJnbydcAzZo4vQh/e6jgXEvgrzxxhvDX7e3t+M///M/g3re+vXrcf311w//+/e//z1+8pOfYP/+/Thw4IBXb4+VK1fixz/+sc8xKcYYL0i96GSoC5MxHhpuqJdbLBqR7vejERvjKPhfPLtmcVCLH4NeK5vo4Y7F5sDxs12yvqbLxXtN8lGz10bVuS7kZgzFnKtbrGGEyv03X4KMVENY4iOlkMnzPI7WdGDLrjPYW9niITZoNBwWFmdhWVk+SgpNXs8pgpEmdYQv5c9IKdR4IyUpOnePhcqjp18/GJRn0uTMRKxeMTfs+yGLw4ryxsNhPXc05Q2HYXFYYdCyCjpqXAPqFgh45wA6Pnh26B+cBgnT5yPp4qXQTy4OeF9kKJiF7JsfR9sHz4j2PIlmHO11sNUdgz5vBmznKtH75Vb0V5V7imMh/u4jnXEtgnR1dXlEzophwoQJ2Lx5M9577z28//77OHnyJPr6+pCSkoI5c+bgv/7rv7BgwQLJxxgPyL3oZCiPQa9FSpKexMwuJVFHKiJQGHQK/hdUsY1SoFTSibckH6uKDY+r6sxYUjr0tbkvvB55hjrJz0pCboY43wVAnJBZ3WD2u8AVWkB3VTQhLzMR9/hY4C4ry5c0wlesWEsp1IxGw4FUCFcbUlYejabLYoaLqMLAxbvQZTUzEUQCNHER9H7nXeg/uQf9J/dAOzEX6dfc7dXPwh1dVgFyfvQ0eso/QNe/XpFpopFH9863MNj/f77FojB+95HMuBZBUlNTUVVVRTaeRqPB9ddf71EhosQY0c54WXQyRrDYHOgiMrLr6rV5bbEIFyqDzi27z6j6/ahU9YW31qWefvWKC/aBEdGGOoqZoRwclF84U7aAFhekQRurgcMZ/gJWG6vBjALvMYsUUAk1oxETAxspyNVCaQvTDNXneA71ntsjmdikNIDTqLYlxheCZ0jGjffDUDDL77EcxyG59Br0Hfk3qwjxge2rpJlgCOV3H6mMe2NURuSxZad3s8RQ+XAXMwmKFDrMVjpDcsJ4RMoYR8H/Qq0okXQS46N1acCh3hu59JSRflpq7xmGcshRA+Uv4l1sC6i7KTjP83j/i1pRAggAOJwuHKuVrkWOIvHEG98si96dTW8Y9FrkZiRiWl4KcjMSSQUgfayObCwA0Gtpx2MModEZkDB9vtLTCAveYUPrW78JythzPJmlykEov/tIhN2hMSIKKRad0b4jFA1QVyFQ7dBTtoj48r9QC0oknfjasU00BI4vV4qZbtU8xkR2Qx9NSPH5DMbf4+pL8/HCuxUkLaA1jT1B+0UEg5QVbELiydqNO8muAeHGwDK8k2owQsNpSFpiYjgNUuON4ifF8ErSxUvRf3KP0tMIC1/Gnt4YV2apMhDK7z7SYCIII6KQoiJArYtOxghqTYdRQpwJJw2CAiWqVHz5DaQkqVdcKMpNGf7aZIwHx4HsnMVQFvfPJ8XnMBR/D7Gca+nDu5/V4PWPT5Ket6TeTAg38cQbYmJgGd4xaONROmk29jYcFD3WvJzZzA9EQvSTi6GdmBuxrSKCsWf85OKAxzKzVFpC+d1HEkwEYUQU1EaD3b02EqM7hrRIEelIgVzijNg0CApqGnokGdcfF0xO9vp4d686+8bzs5I8FoMGvRalF2Vi37EWBWfFoEIfF4OK6naSz2Go/h4UvPLRcXJzYzkq2EJNPPGG2BhYhm+uKrqcRARZWnQFwWwYvhBaRZpeXRexFRLdO/+OGENyUFGuglmqre4Yeg9sRX/VvojzRFETvQe2MhGEwVASaqNBm0O9UZuMEaSKdBSLHOIMVRqEWPosA+RjBuLXr36Jn/1gbCKWEnMJhv/+1owxj101P4+JIFGAhgPWv7IfDW3nvX4/lM9huP4eYpEq3UkOA+DRiSe7jzYFXWElNgaW4Z8Z6dOQm5SF+t7wW5Vzk7Nx0cSphLNieCPSW0VsZyvR8KfVQUe5chyH+MnFiJ9cDGvdcbS8/jh4p7T3D5wuHrzdKulrKEF/1T647JaA4lMkwYxRGREFtdGgXiu/2SMjPJaV5ZOM46vFIhwEcYYCb+LMoao2rN24M+jdTyEN4lBVG8mc3NHGyn+52H+81evjavQESUvWY2bRxDGP95xXZ9UKI0Q4zqcAMhp/n0OxEe9qRC4DYCHx5MFb5+GNXy7DxvsW4/YbZmLO9InQaDwXQTEaDmWzsvHE7WV4ds1iJoBICMdxWDV/JXRhmqTqYnVYVXora1OSCaFVRDsxV+mphM9XUa7Nr/0CDS/eE9C4k+d5dPzzT5ILIABgmLYAQ3liUQbvgrNPOiNsJWCVIIyIgtpoMCWJOUhHCmqNdKSKcRwtzohNg1i/ahHpjX+KAiafLh44VdeFaXmef7PCHO9tMkoRG8PhZz+Y7/Um/rODjQrMiEFNqFUUvj6HFBHvaoKyvTAUDHot8jK1yMtMwrJLp0gaA8sITEFqHu4ruw1P7noB9hBic3WxOtxXdhsKUvMknB1jNGNaRSLUMBUILsq179AncHTI4w3Sf3S7LK+jBIPnuwFTjtLTIINVgjAiCpMxHhoigVWj0M0bIzwqaztVGelIEeM4OrFA7G6xkAbBEzpy6nXKLCjKvVSDmIwGVX12v7f0Aq+Ck8XmQGVNp/wTYqgCb5/Dj3adVW5CEkDZXigGKWNgGcExM/NCPLr4XuQmBVcdmZucjUcX34uZmReG/FoWhxUNPc2o7jyLhp5mWBzR134gNUKrSMYNa5Bx01qlpyMKf1Gultoj6Nj6ogKzij5cjuiqbGWVIIyIwqDXYkFJFnZXiI/JXVisjps3RnBQLR6oIx3Fxjh6Syyg2C0+19KHyppOsp+V2gQ2WFo6+r0+/q3LC/HSB8dkno13Xv+4CnOmp48RQjrMVrhYNMy4xv1zSBnxrhYo2wsZkU9Bah42fGMdjrefxrbTO1DeeNgjPjeG02BezmwsLboCF02cGlILDM/zONZ2Ctuqd2B/4xGPcTWcBqWTZuOqossxI30aa60JEUPRxaKTY2JTMuHs6wZCqASixFuUq725Fi1//3X0GKLGaMFxnCxtPd7gwmx5UytMBGFEHMsuzScRQZZdmi9+MgxZoFw8SBHpGG6Mo6/Egi07z5DM68NdtWQiiFJxrwa998vUlGz1pDo5nC78evN+/GntEo+b72jyfWCEjyC8dpitkpmTKsHoCjYGAxjaGJiRPg0z0qfB4rCiy2qGzWGHXqtDarwxrBjc2q46bNy3yaf5qot3YW/DQextOIjcpCysmr+StdiEgNjkGE6rR8a3f4pBa5+ipqvuUa48z6Ptg2cUE2Wo4bR6ZNx4P2LiE4OO/o0xZmDQ7N1bLRw0uuiKsGbtMIwIhCn84w3KxYMQ6UjNnOnpuOPGWUEbiGpjNbjjxlmYMz3d43EpBB8KDHotLi3JJhkrFKblpnh9fOueOpln4p+WTguOVnd4PKZU9QxDXQifw2gSxbxVsDHosNgcqGvpxam6btS19JKdx+XGoI1HTlIWitLykZOUFZYAUtFyAo9sfyro9Jn63mY8sv0pVLScCPm1xjNCcgynDa3VVFic67IKVGG62vvlVgCA7VylqMoWNaGdmIfsmx+HoWDWsJ9L1vcfRcIFCwFu1D2nJgYJFy5E1vcfRfp1q4lnEj0iPsAqQRgRyD93nyUZ56M9ZzFz6tg0B4b6oF48SBHpeKiqDX9460jQviUOpwt/eOsIjBN0HkJIh9lKVm3B80Bnj42s6oXKBDYUpuePNbJVa1vB659UeZxTlKqeYagLQXiNFlHMVwUbQxw8z+NoTQe27DqDvZUtHsK/RsNhYXEWlpXlo6TQNG7Ep9quupDNVgHA7rTjyV0v4NHF97KKkBAQRIxgKw20E/OQfs1d0GUVDD82xnS1ap+s7Sj9J/ag//QB9B2JcINSTQwSppci6eJvQJ83w+Mz7x7967Jb4OzrgstuhUYXj9jE1OEYW1vjado5Rdm9DBNBGBGF2tsiGNJAvXigjnSkTHIx99GWbnb32pCbQdM6QpHQEyreDFDV2lZQWdPpcU4x6LVISdShqzc6ynEZ4WO1O5GTPgEaDafK926wTM5MxOoVc5kAQkx1gxlPv37QpxeUy8VjV0UTdlU0IS8zEfeMg78Bz/PYuG9TyAKIgN1px8byV7Bh6c/GjWhEQUARw8/iXGD0Ir2/+iDa33tatp+h9c31sr0WNenfvhdx6ZM9xAx/aHQGxAVxHAlR9jFiIggjopCiLYKJIOrHZIwnWzxQRzpSJbk8u2YxOI4jr1KxOeiqaCgSekLBOEHr9fOp5raChrbzmJY31MJjsTnQzQQQBoaEXINei4XFWbJXU1Hx39cW49rLC9iCkphDVW0hieh1LX1Yu3EnHlpZOqadMpo41nYq6BYYX9T3NOF4+2nMSJ9GNKvxQbCVBsGg0RnAR4kvhxzEJqcjLoQYWpfdAmdvJ1wDNmji9IhNSgvp7xMa0XXuZyIII6KIhLYIBj2UiwfqSEfqJBfqKhW9lq6KRu54z57zDq/VWmpuK2jtsgyLIB1ma7RVjzLCpLXLgrzMJEVayijISktgAogEUFYRRhsfV39OMs626h1MBBEBRaWBpWo/0Wyin2DMR3meh+1cJXq/3Ir+qnLPSh1Og4Tp85F08VJwWuI0lyjr7WXGqIyIQu1tEQzpWFaWTzIOdaQjZXQvABgTaS9aKUk0VS8WmwO7j8q7eOMBrya2gteG2lFzxQpDXj49MNRfX1JoQl6mepKNgoVnch45VFWEfJQtTADA4rCivPEwyVjlDYdhcVhJxmKEjstugaX6S6WnETFYTh/AQHs9XHaLzHM0cQAAifpJREFU1+/bm2vR8OI9aH7tF+g/uXes3wrvQv/JPWh+7RdopW5BioQbrxBgIggjohDaIiigbotgSAvF4oE60lEKjxqTkTaCjOo9TmnYGgrdvWNFEINei4umqDOaMyN1ZMdMzRUrDHkRPt8cx+GeFXMj7r3R0mlBZU2n32OiJdFELiirCKONLosZLiIzTRfvQpfVTDIWI3ScvZ2yGqNGOl3/fhUNf1qNs7+9Fa1vb4D17NFhodNSewRNr64LOvVm0NxGPLvoElzZNjgjolBzWwRDWoTFw9qNO8PaOZMi0lEKjxq1CnNKVTX48jRR635EvG5kccvSYRgC7h5URTlGPLSyNOQ2iDitBgMO5RYTH+6qRUmRyeMxlmgSPpRVhKP/Lu5YbA50mK2wDQxCHxcDkzFe9fc+NmIPCZuDeVIohWtg7EYGIwi+qujoP7kH2om5MC68Hh3/fAG8Q8HfZ5TdyzARhBFxUPVUU7dFMKQn3MWDVJGOUnjUdJhpy3apzH+VKrn25mlisTlw/GyXArMJzNnmXuRmJAEYEm1nFZlw+HSHwrNiqAF3D6o509OxftUiv4kg7kzOTMRPrp+Jh/+4W7F0mdGJaizRJHykTrqLdHFKH0vbFqqn9kZgBI0mTp0bO5GEo70e7e8/A6VViGD8SiIJJoIwIg6hLUJMGSl1WwRDPsJZPEgV6SiFRw21WS/VeErdJ+u9+PaoNSIXAM419eKy2SP/LmEiCOMrRntQFeUY8dyaxais6cSWXWewp7LZ430do+GwoCQLyy+dguLCNHAcp2i6DM+PiKos0UQcUibdRYM4lWowQsNpSFpiYjgNUuON4ifFCItBi7iWL4aAwvc8mhjEJqYqOwdimAjCiDjU2BbBkJdwFg9SIEV0L3UlCJX5r82uHpNPNRuOWgc8Raeaxh6FZsJQExrOuz8Px3EoKTKhpMgEi82Bzh4brHYn4nWxSEvWj9ndvyA/RdF0me5eG+yOQZZoIhKpku6iRZwyaONROmk29jYcFD3WvJzZMGiD38G2OKzosphhc9qhj9Uh1WAM6fnRhr8I1kDxrDzPo2Pbn5SaOoOQhOmlEkbvKgMTQRgRidraIhjyE8riQSoMei0WFGdid4X4suYFxUMeNSbj0IKJYpNQQ2j+q1SctM3L66rZVDJeN/K+s9gc2FvZouBsGGqhuMgU8Jxk0Gt9HhNod18ubANOvPDeUdGJJs+uWTyuNyKkqCKkittVi4fIVUWXk4ggS4uuCHgMz/M41nYK26p3YH/jEY8KFA2nQemk2biq6HLMSJ9G8r5Vu9ASKIJVn3sBwPOw1Z+ER4WCWzyrfnIxbOcqgzbxZKibpIu/ofQUyGEiCCNiUVNbBENZ/C0epObC/FQSEeTC/KEyQ4Nei5Qkvddo2FBJSdSR/V6UipP2ZoxKWYFDTWZawvDXam7bYcjLlRfnBjzG1+Iz1N19KWnsOE+WaOLPzDPaoa4iTE3S4f7nwquOBYaEkF9tKkdhjhF7j6nDQ2RG+jTkJmWhvjf862tucjYumjjV7zG1XXXYuG+Tz9dx8S7sbTiIvQ0HkZuUhVXzV6IgNS/kucgttISLvbkWbR8841u84F2w1R33+T3BzDMmyYSYJNZ2HhXEaKHLvUjpWZDDRBBGRKOWtgjG+OV4LU084bEzHfjWFYWw2Bzo8hILGw5dvbYxhnnhYkxUxljOmzGqQa/FRfmpqCT63VOSnjKym6eGRStDHSwozvT6eCADy5LCNBw/0wWHUx0Rk4dOtpOMEyjRJNqhTrqraewRLU61dlvR2j22HVMpDxGO47Bq/ko8sv0p2MNIi9HF6rCq9Fa/930VLSfw5K4Xgh6/vrcZj2x/CveV3YaZmRcGPRe5hBaxWGqPoPWt35AkkAz2dmCwl/lhRQWDDtjrjyN+crHSMyGFiSCMiEcNbRGM8YnF5sDeYzTtDnsrW4Z3gqmCWNyNDMViMipTqpuS5L2dR731FSMzU3PbDkM+Zk2diIT4uDGPB2NgeURFproajsPh0zQiiLdEk/EGZdLdll1nCGYUGLk9RApS83Bf2W0hCRXAkAByX9ltfoWE2q66kMcFALvTjid3vYBHF98blFAhl9AiFntzLZkAwog+er/cGnUiiEbpCTAYlBj0WuRmJGJaXgpyMxLH9Q3WeMJic6CupRen6rpR19ILi80hy+tKIVhIZZgnFoNeixlT5HcG9+ZpYrE5cPyM+qpAAKCnf+S9p5RwxFAX/7lk2pjHDlW1Ye3GnYp7fITCrKkmsvOdkGgynhGS7sQwOTMRBZOSyOJ2g0HwEKluMAc81uKwoqGnGdWdZ9HQ0wyLI3Tj75mZF+LRxfciNykrqONzk7Px6OJ7/QoIPM9j475NYVWYAENCyMbyVwJGx4sVWmq76sKaX6jwPI+2D55hAgjDJ/0n98Fltyg9DVJYJQiDwYhIApWRy9HDbO4L7wbKF929NvK2E0ovD7W0k1GKTwyGlHiLYw/XwFJpFpRk4dApmkoQQDmzZbVAlXTX2WOT3XvIn8GtFN4XBal52PCNdTjefhrbTu9AeeNhj3FjOA3m5czG0qIrcNHEqQHHPdZ2SpTXCADU9zThePtpzEgfK3ICdELLhqU/k/zaa6n+khmYMvzDu+Ds60JcFCXEMBGEwWBEHMGUkcvRw0x9E29zDJJXD1Clw1hsDhw/20UyVih4a+dR8+IxI3XkBoE67pgRWXiLY+d5Hk+/flDV72FvTM5MJK8EU8psWU1QJN2dquuWcIa+8WZwK6X3BcdxmJE+DTPSpw2lq1jNsDns0Gt1SI0PLV3l4+rPgz7WH9uqd/gUQeQQWsTgkQBzci/5+Izow2WPrnsa1g7DYDAiilDLyIUe5kNVbeRzob6J12tjvkq6ofGSMOhjyFrClEo66fZiEqtmr42c9AnDX0faQpdBh6849qM1HRHVAgOMiDkTUwzQaGh2pGMI47sjHSHpLtjWmMmZiVi/atGwJ4eS58Mtu0e8SCpaTuCR7U8FvfAXvC8qWk6E/LoGbTxykrJQlJaPnKSskAQQi8OK8sbDIb+mN8obDvts8aEUWqixN9ei4cV70PzaL5gAwggedRQDk8FEEAaDETGEW0YeSg9zKFC3rqQk6WGxOWCx0SyeLbZBMn8UpRb0/iJy1U6gfnFGdDJ6kerOR7vOyj8hEbiLOUKiCQULSrKYZ5cbQtLdE7eXoWxm9pjzW4yGQ9msbDxxexmeXbPYQ1xT8nwoGNxGivcFAHRZzB6tNGJw8S50Wc1jHpdLaAkHS+0RNL26jrW/MELGNUDbAq40rBaRwWBEBGLLyP31MIeLyRgPDQdQFEhovtoZPU1c2lxdb8bMqRNFj6PUbqOviFyqeElq3Nt3VGKhwpABDcehdEYGrr2s0Gccu8XmkNXAUiyTMxOxelQr4dWXTib53C1bmC96DLkQUrtsA4PQx8XAZIyXRMAJN+lOyfOhy8Wjw2zFxkPyel9YHFZ0WcywOe3Qx+qQagi+HcYW5jx9jucYO54UQkso1S6+YAkwDDEM9vcoPQVSmAjCYDAiAooycm89zGIw6LVYUJKF3RXiFzYLi4d2RmsaaS8ytU09JCKIsNsod0uMr4hcqnhJajx9YpgKMl5w8Tz2HWtBjEYDHrxXQ2alWsoEOA64dGb2sADx0e6z2FPZ7DGnGA2HBSVZWH7pFB9izvh4TyttvD3UFhm80KLk+fB4uzzeF1SGq/pY2gpOvXbseHIILaMJJAyxBBiGWHjngNJTIIWJIAwGIyKgKiPfsvsMmQgCAMvLppCIIMvLpgAAHE6a3SOBAS/tJOGgxG6jhvNt7CrES6rZX0HN3iUMengefg2ZlfaI4TgOS+dPRkmRCUdrOsCDH9Oy5eJ5gAd4eBdr/rn7LMlcPtpzlkSclYJwjbflqhjxhpLnwwPt5STj+DMZpTRcTTUYoeE0JJUaMZwGqfHGMY/LIbQAoQlDtnOVrAWGIQpOG6f0FEhhIgiDwVA9lGXkQg8z1c0pxc2ne4xmlok2fizLNCHwQUEi926jP98AIV7yvmc+h3NQnd4bSlXPMJRHMGR+aGWpKgwsgaHF+y9f2ofUZD1aOi1ej/En5Kj5PEzFoaq2kHyn6lr6cP+zX2BqrhEnz3UrEtUOiI/bDZeYWCcqO46RjCV4X4xu+6hoORGS34hguHpf2W2YmXnhmO8btPEonTQbexsOip7zvJzZXttU5BBaQhWGVvTHgDbfiTHeiIlPUnoKpDBjVAaDoXooy8hdLh6dPXTloMLNZ7gLnNExmhdNSSObGwBcmJ9CNpYg+MjFN8sKAh6j5uJ8g16LSy4ca47JGB+MNmQ26JXfdxpwunwKIKMZnayl5vMwBeEabzucLhw/0zXmdyNUjDz8/G7cuWE7uTH3aIS4XTnFtlnFiZKajEpluHpV0eXhTtODpUVXeH1cEFoo8Ca0hJPE8ztHPU7Hq0t0ZEQWsYl095NqgIkgjKjCYnOgrqUXp+q6UdfSS5aMwVAW6p0tT98G8YR78+ktRtNkNCApgabkMCkhDiYjXWWJWMEnFNyrY7whGOU6VFYFMjo2OWVCdJWPMkJDMGTmeR4WG+15Rw5sA4P435f3obrBrPrzsBjEGm8HQsqodndCjdsVy8KZtCKvu/cFz/PYuE+84aq3lK4Z6dOQmyQu6Sg3ORsXTZzq8/tSCS3hCkMDGg6vZiWjUae8GMuIRDjEJkZXLRETQRgRD8/zqKhux/pXyrFi3T+x6snt+OnvP8eqJ7djxbp/4lev7EdFdTuLq4xgqBfdoxeqFIR68+kvRvPGK33fWIXCd4jGcUeu3cYbrpzqt3ycwiiXmpivEn7cKT/eqtBsGGrhXEsfjlZ34GhNh9JTCQu7w4WH/7AL55ppTZulOA+HixznE6mi2kcTTNzupTOzkJ4iTiCfnJmIGZNpRRB374tjbXSGq6PhOA6r5q+ELkzvDl2sDqtKb/V7jZJCaBErDA1oNHgzPcmH4w+D4Rtd7gXQ6GjbtZVGPVcgBiMMwjUwY0QW1GXk8TppFvDCzWdlTSe27DoTRvLCEN+6vACbPzouyusiNobDtZcHbicJB0Hw8ffZE8vb/z6Nr83N8fk7ojLKpWRBsaeHicXmQHdfdLmpM8LjfzeVR2QliIDF7sQzbx4hG8+bYBjSfIhNSOU6n0gR1e6NYOJ2qxvMYXuICG2caQk6ybwvPq7+XPSYgG/D1YLUPNxXdlvIVRW6WB3uK7vNp/GqgCC0PLL9qbBEC29CC4Uw1KqLRW28FoVWVinNCB6Oi766CSaCMCKWcAzMRhvVMSID6sWD1S6dcVwwN5+B0Gg0uPs/5+Cpv4Zv3Hb3f86BRiPdRSuQ4CMWf3HGlAaNlFyY71kqWl3frdBMGGojkgUQKfBneuwLqWJr5T6fUEe1B8JX3K5Q1ReqD8roNk4pTEYtDivKGw+LHhPwbbgKADMzL8Sji+/1azDqTm5yNlaV3hpQABGgFlqohKG9SfFMBGGEhK3+BFx2S1RVg0SfrMMYF4RrYCZXOSqDlkjtRTfotcjNSMS0vBTkZiSGdNO/+OJcLJmXG9brLpmXi8UXh/fcUOGF/yRoN9uy+4zXxykNGik5frbT49/VDbTtAwxGtLD80ikhHV/dYMadG7bj4ed3Y3fFWMFVjAmpEucTX+c2uaFo45TC+6LLYpbUcNWdgtQ8bPjGOjyy+B4syJkLzagd7xhOgwW5c/HI4nuwYenPghZABAShJdjWmNzkbDy6+N4xyTaUwtCxCTrYJKxEYkQhvAvOvi6lZ0EKqwRhRBxiDczkKkdl0BEJniDUVDeYsfNIeHG0O480YfmiAklbvwK1olHgK0ZTzgjIUNhb2eIxX4eT5iaewYgmMlMNfk2PRyN11acS5xM1RQSLbeMUvC/EtGmM9r6whel54Qt3w1VvcByHGenTMCN9GiwOK7qsZtgcdui1OqTGG71WkYSCILQcbz+Nbad3oLzxsIfIE8NpMC9nNpYWXYGLJnr3wyIVhjgOvbEa6B3qvJYy1InLblV6CqSofyXAYIyCwsBM7nJUhjhMxnhoOIBis04jshddDtQu9IW6KAkXIUZz9EJBzgjIUBg939Sk8Ez3GIxopqPHipoGM4pyA8ctiq36XL9qUUAxWInzia9zm1KIaeOUwvtCH6ZhqS/cDVcDYdDGixY9vOEutHRaunG2ux699vNI0k1Afkou0gz+Pw/UwpBdwzYBGaGh0dF/LpSEiSCMiIPKwGzL7jNMBIkQDHotUpL06OyxiR4rJVGnmhtPX6hZ6At3URIu3lqXTMZ4aDScKlti3OebkRo9vbMMBhXOQR4PPLcTP/vBfL+VGnKJwUqdT9QUEeyOLw8Rf1B7X6QajJIZrioFz/M41nYK26p3YH/jEY+fTcNpUDppNq4quhwz0qd5fb9SC0M6FV4/GSpGE8MichkMJaE0MBPKURnqx2JzoKtXvAACAF29NtX/3SmFPkrELkrCwVvrkkGvxcJicdGDUuE+X71O3WIbg6EUA05XQH8uSjHYH0qdTyKhLTMUqLwvgKFqjNJJs0nm5W64qhS1XXVYs/VxPPbZ77Cv4dAYccfFu7C34SAe++x3WLP1cdR21Y0ZQxCGKNDwPJJYuyYjBPQ50ReRy0QQRkRBaWAmlKMy1E+H2Qoq302eh2x/d4vNgbqWXpyq60ZdS29Q4ouahT6KRUko+GtdWlaWL9s8goUDPOar1rYdBkMNCJUavkyV5RSD5T6fiI0IlopwrlnuUJqMSmG4qgQVLSfwyPangvZMqe9txiPbn0JFywmPxymFoRnn7dBLYGbOiGai7/0SXTI0I+qJ1JQQhjgi6e8uNsZRCqGPqv2HalESLBPifZdlFxekQRurUZX5qFar8ZivyRgPjgOZgMdgRBu+2vYoxeDdFU0BTUhLCk3Iy0yUTeQNJyJYKvxdszgOKL0oE9deXhB09DCVyagUhqtyU9tVF3KLEADYnXY8uesFPLr4Xg+h6D+KLiOJI17QG10GlwzpsdUdZxG5DIaSjMeUEEbk/N0pYhzVKvhQLkqCpbd/wOdOZGVtp6oEEAAYcLjQYbYM/9ug1+LSkmwFZ8RgqB9vlRqUYjDPA7/avB8V1e0+q044jsM9K+bKVr0VakSwVAS6ZvE8sO9YCx5+fjf++38/wen67pDGN2jjkZOUhaK0fOQkZYXUliIYrurC9MLwZrgqJzzPY+O+TWGZxQJDQsjG8lc837NUFbE0wzDGGdEWkctEEEZEIRiYUaDWclTGWCLh736oqg1rN+4MeidRiHE8VNXm8bhaBR/KRUkoNLSd9/q43FUpwVLb1OvxbzW27TAYasJb2x61GHyoqt2v+AwMRcU+tLJUciFkcmZiSBHBUhHqNaut24qf/v5zbNlVK/HMRhAMV0MVQnwZrsrJsbZToqpYAKC+pwnH208P//uTmi/ETgsAsC8pulI+GPIQbRG5TARhRBSUBmZqKkdl+Eftf3exMY7uN+VqFXzkNEN1p7XLMuYxJapSgqX3vOeuX3FBGmJYFCGD4RNv/lxWuzTm1b7EZ4E509OxftUi5GUmSvL6+rgYrF4xV7HqBIFwr1k8D/zxnaMBhRCLw4qGnmZUd55FQ08zLI7wF0+Uhqty8nH15yTjbKveAWDod1reeJhkzGMTdLAp/B5kRCBR9p5hvQCMiGNZWT52VTSJHkct5aiM4Lj60skkf/dlC/PFT8YN6hhHQfCh+FkpBR81mXwqVZUSDLpRv6fK2k4MqnSuDIZaGN2219M3INlrCeLz+lWLUJRjHPP9ohwjnluzGJU1ndiy6wz2VHq2icRoOOSkT8C5MPxDbloyzetryglFytcL7x7F9LwUFOWmeIwrJgLWH4Lh6vH209h2egfKGw97jB/DaTAvZzaWFl2BiyZOJRWZLA4ruixm2Jx26GN1SDUE9jWhFCzKGw4Pz4EiMhgAXByH3lgN9A5lNjcYkUp03cswEYQRcVAYmKmlHJURCupUoCljHAVzQDUKfUKFitziQ0bqWBMupapSwuH9L+QrHWcwIpXRbXsDTmk/46PF59FwHIeSIhNKikyw2Bzo7LHBanciXheLnvN2PPp/e8N63Tf/dQpzpqcrKoRQXLOGfFYO4MWHloDjONR21WHjvk0+2z+ECNi9DQeRm5SFVfNXhtyqQmW4GgxiBR1SwYJ3Df2sYXqL+MLOKhQZoRJdGghrh2FEHmINzNRSjsoIjX/uPksyzkd7aMYR2LIzcPxiMHzoVl4sJJ+IQRurwYyCVLHTGoayJSkUUpPG9oKrqSplNM0dI+07FpsD+4+1KjgbBkP9eGvbSzTESf66gvgcCINei9yMREzLS0FO+gQ8/06F6Mo/XwatckDlp9TaZUFlTSdZBGwoiDFcDURtVx3WbH0cj332O+xrODRGzBAEncc++x3WbH0ctV11Y8agFixsjqEqFEp0rEKRESpRtmxiIggjIgnXwEwfF4OHVpYqXo7KCA1KDwhvJnzhItW8KJJPHE4XjtXSOnkrYfJptY9dbFD6plDjng7TYbbCxfJxGQy/eGvbK8xJluW1vSXT+IOy8k8JqP2U3thZLioC1puAoCRUgg61YKHXDrXhaDiaZZuG55GksnQ1RiSgzvuucGEiCCNiCdXAbHJmItavWoQ509MlnhmDGkoPCG8mfOHSYbaCao3L8xieF9VOXag3+IEQWtHkxFvEr1JVKaESSW07DIZSeGvbMxkNsqS3hSqKq/XcHCy0fko8qvjttBGwClLbVUcm6FAKFjGcZrjdp3TSbJIxZ5y3Q6+S3zsjgoiy9wwTQRgRjWBg9sTtZSibmT1mdzhGw6FsVjaeuL0Mz65ZzCpAIhTqxaS3hXU4mPtoS167e22qrXoBRlrRxLbqhIKviF+1Rs8mJYyU8au5bYfBUAP+/Lmuu6JQ8tcPRRRX87k5WCivpZrELmgM3iPMg2V0BKxS8DyPjfs2kQk6Bm08ppto3r/TTYXD7T5XFV1OMuaC3uiKOmXIg0YXXdHKzBiVEfH4MzBLS9azGNwogHox6WthHSpUYoqAzTEoSdUL9WdAroJIDQefu8EUBslSkBA/8t4yGePBcVG3ecJgkKAL4M917WUF2PzRCdGtgYEIdB632BzoMFtxtrlX9efmQFBeS2MzaFpZtlXvwIz0aSRjhcuxtlNBt8D4QhB0hn8WqipRt69npE9DblKWqLlm2J0osMovwDEiHQ6xiXQ+c2qAVYL4Yd26dZg+fTqefvrpgMe6XC68/fbbuPnmm1FaWori4mIsXrwYP/3pT7F///6gXo9ijPGOu4FZbkYiE0CiBEoPCG8mfOFCJaYI6LUxqq16AUaiFQdk6iVOSfItYoo1SJYK9wWdQa/FxRew9jsGYzQaDYeHA/hzaTQa3HXTbMnn4u08zvM8Kqrbsf6VcqxY90+senI7nvzLl6SvSy2iB4MgzIpG44QmpY1goJEIWCX5uPpzknG2Ve8AMBSRe7KjmmTMk+3Vw78fjuOwav5K6ML0HIlzuXBTW2+UOTsw5ECfdyE0urFpfZEMqwTxwSeffII333wzqGP7+vpwxx13oLy83OPxpqYmNDU1YcuWLVi5ciUefPBBScdgMKIVwQOCIjbWmwlfuBgTac3PUpL05P3RlEINhSlgKAjtQb7+XoJB8v++vA92hzpM3kanIn77a0U4cIJmscBgRAuXz5oUlD/X4otzUXG6Hf/aXy/JPLyJ4tUNZjz9+kHJz3XUInowGPRalF6UiX3HWkSNw8XZwHFEVTFfRcCGkvBicVjRZRmKjdXHDpmGhpsQY3FYUd54OKznjkYQdLosZvBEpSA8eI/fT0FqHu4ruy1k/5I4lws3N/dgkgLiGyMaiD7pjIkgXtixYwfuueeeoI7leR6rV68eFi8WLVqEFStWwGQy4cSJE3jxxRfR2NiIl19+Gampqfjxj38syRgMRrSzrCyfRATxZsIXLiZjPDQcQFEhrXG7GZdiTAqoTAGDxfWVWaw/0WrO9HT86s7L8OvN+9HSafF5nFzEjVrYFE6SJ+WCwYgkdhxuwJXzcgMKIdUNZnx+qFGyecwvzvQ4vxyqasMTm8olNzWmrEgMlWsvLxAtgiCGuhU08GKe53kcazuFbdU7sL/xiEd0rYbToHTSbFxVdDlmpE/z2WLljS6LeUwMbrgIgo4UEbnuzMy8EI8uvhcb920KqjUmw+7ETW29TABhhI2t7jhcdktUVYOwdphRbNq0CatWrYLDEVy/3AcffICdO3cCAK6//nr8+c9/xpIlSzB79mysWLEC77zzDoqKigAAzz33HFpaxl54KMZgMKIdimQSfyZ84WDQa7GghCalZGHxUIWKQa9FShLNzXFKoo6s6oU6WjFYgikZL8ox4k9rl+D/fXOG4tG5E0ctbKiSiBiMaILngcdf2ofqBrOfY3j8evN+SdvvLsofuR5UN5hlEUAA2orEUCkpNEGnFXn7P0jdCuq/qrK2qw5rtj6Oxz77HfY1HBojWrh4F/Y2HMRjn/0Oa7Y+HlL0rhSChRQRuaMpSM3Dhm+swyOL70Fp5gxoRlWRangeJX02/KixG6vru5gAwhAJD2dfl9KTIIWJIF9x9uxZ/OQnP8H69evhcDgQExNcn/nLL78MAJgwYQIeeOCBMd83Go149NFHAQB2ux2bN2+WZAwGI9oR6wGhD2DCFy7Ly2gqS4RxLDYHunppFs5dX7WTUEAbrRg8wZaMcxyH6xcX4bf/czkyUpXbqTAmeoogLZ39Cs2EwVA3DqcLv96832cLYEV1h+TVXSfODt3UC35HcsVaU1YkhorV7hRtNssP6MkMnzkAqfFGn9+vaDmBR7Y/FbQZaH1vMx7Z/hQqWk4EdbwUgkW8lrbKJz7W+3gcx2FG+jTcfdG38PPaDtx7rhOr6rtw77lO/Ly2A//V2otCqyMKGxkYSuCyR1eqEBNBALz22mv45je/ie3btwMAioqKhkUHf9TX1+P48eMAgMWLF8NoNHo97pJLLsGUKUMXvK1bt5KPwWCMF4pyjLhpSXgu8jctmSZJRDJ1hUqH2Up2c8nzdJUIci0O3OHgOx3GF0U5Rtz1nVnSTCgMGtrERUgyGNFMS6cFR6s7vH7vjY+rJH/9PZVDUbVy+h1RVySGSofZKr7d0hULV18KyXwADi197V6/U9tVF7L3BTAUWfvkrheCqghJNRih4WiWQzGcBqnxRlgdtBWAVqf/8VwDQ98X/qwskIwhCcSbiErDRBAAR48ehcPhQFxcHG677Ta88847yMvLC/i8L78ccQpfsGCB32NLS0sBAI2NjairGzkpU4zBYIwXqhvMePNfp8J67pv/OuW39DpcqCtU1JoOo0QKSyg3cu5pDute2CPZnEKln6gSh8GIVl7/ZKzYYbE5UFnbKflrC1G1cvkdSVWRGApKCNr+4MFjY/krYyqCeJ7Hxn2bQhZABOxOu9dxR2PQxqN00uywXmM083Jmw6CNl9wTRIDneVS2VuHZEx/gsQITnp6cho25qXh6choeKzDhtcwk1MRrmSjCICK63klMBAGg0+nwne98B1u3bsW9994LnS640rjq6pH4q/z8fL/H5ubmDn99+vRp0jEYjPGA2HJl28Agfvf6QfL0FWAkpSRUoUAfF4OHRsVEUosNVAkEBr0yPtrBVLJUN5ix6sl/4+Hnd2N3RbOil+nRv+8EFtPNYPilsqZzTNteQ5u8KVRy+B15O98rAck1RuOEJtEsfpyvqO9pwvF2z/vaY22ngm6BCWVcb1xVdLmo1xFYWnQFAGlabEbj7pOyv/M0XKOENRfH4egEPV6clILf5aaiUYE0IkZ0wQ9El8cZ+0QAeOSRR6DRhK4HuRuUZmdn+z02K2vEPNH9eRRjMBjjAYpy5XMtfais6URJkYloViPMmZ6O9asWBR2tODkzEatXzB1zQ2wyxkOj4Uj8NygTCJralWnrCFTJcqiqDb98aZ+k5omhEK/zXGAU5rB0GAYjEA1t5zEtb6S9Qs6kJ9uAU3K/I1/nezmw2BzoMFthGxiEPi4GBn2s6GsMZUSuwLbqHZiRPtLu+nH155KM640Z6dOQm5QlSnTJTc7GRROnAhhqseHAkcTkcuDGeKZUtJwIqU2oVReLFyYZcXNzD6ZaWXUiIzxcQaQ4RRJMBAHCEkAAoKenZ/jrhIQEv8caDCNGfX19IwskijGCpampCU1N4UWMVlVJ35vLYPiDqlx5y+4zkoggwFBFyHNrFqOyphNbdp3BnspmjxvNGA2HBSVZWH7pFBQXpnktiTbotVhYnEUSB0yZQFDd0BP4IAnwV8lS3WDG4y/tE23yR4nV7lmplG3yf15nMBhAa5fFQwSRixgNB32c9LfCLgkqEP3B8zyO1nRgy64z2FvZ4nEd0mg4pCTqxPlFEUfkAkB5w2FYHFYYtPGwOKwobzxMPq4vOI7Dqvkr8cj2p8Jqv9HF6rCq9Nbha7pBG49YTSwcLvGCgzYm1mPu4fqkDGg0eDUrGbc1mllSDCMsOOIKJ6VhIogIBgYGhr/W6/3vtrp/3/15FGMEy9tvv43nnnsu5OcxGEpDGc+65+iQEZ5U8YQcx6GkyISSIhM6zBbUNvagt38ASQlxKJiUDJMxcHLJsrJ8EhGEMoFACaHBXyWLEJ+pJgEEGFu5cviUd8M/BoPhG7kSnhaUZMGYKP2NfX3reazduBMPrSzFnOnpkr5WdYPZb0Wi4IMiCuKIXGAo5rbLaoZBG48ui3lMDC7FuP4oSM3DfWW34Tc7n8fAYPDiRVyMFveV3YaC1BEvwU5LN4kAAgADgw50WrqRZkgR7ZMyoNHgzfQkrK7vYokxjJCJTZRfqJYSJoKIwD1GN5DJlbsPgXvlCcUYDEa0QxnPKtwASiWCBNqBW1ichWVl+SgpNPn8zAuJM2Laf6gTCDLT5I+d9VfJUlHdLmvJfLh8KJPhIoMRyYwWPXIzxCVuBcvyS6eQtiD6wzYwiCc2lWP9qkWStcUcqmrDE5vKJTc/5Qf0AM8BxC0xggGoXMai3gj1J/J2/Jnu+hBH8c9Zcz3SDCkkPimtuljUxmtRyNpiGCESm5iq9BRIYStpEbi3p9hs/lV1u33kBBwXF0c6BoMR7ag1MWU01Q1m3Llh+7BB5+ibapeLx66KJjz8/G7cuWG7z7Qa6sQZCgomye9t4a+S5a/b1N+iZ7E5UNuoTBsRgxFJ5KRP8Pi3Qa/FjAJpY2QFoVhoQZQDKQ26qxvMsgggwJDxZ7FpBv24XxmAymEsOhqhzcQRQhUIADgGHWPiePvstB5avbah8ah8UvYm+a+KYTDGA6wSRATuHh5WqxVJSUk+j7VYRnYsk5NHFhMUYwTLDTfcgIULF4b8PGDIE+Sxxx4L67lyMtoAzGSMl2zHnyEfak1McSfUHbi6lj6/5dFC4kyoN7VSJRDI3NLut5LFYnPg+JkueScUBnImXDAY0caKq6bhZ3+UJu56tFBM1YIYDFIYdItNTwsF4RqjNU5F5WeVZOPGcJphA9BUgxEaTkPSEuM+ri+o4ng3LP0ZOI5Dom5C4CeFQJJ+AqlPyrEJOtjaOOjlvrAzIhpnXxfidPJXBUsFE0FEMGnSpOGvm5ubkZGR4fPY5uaR8jX34yjGCJbs7OyACTSRCEX7AUPdmIzx4DiahbiGA1liikC4O3CByqOpEmcokOPmWiBQJUt9q3rFBXeBLRLadRgMNeCtRXFm0URkphnIP0caDTdGKKZoQQwFaoNuivS0YHC/xvD8RNGJKu5ckj1r2LfDoI3HvOxZ2Nd4SPy4k2YF9AOhjOOdkT4NU1JyRY01mnxjLq1PCsehN1YDvUO+6zoj8nHZrUpPgRTWDiOCqVOnDn9dV1fn50igvn6kP7CoqIh0jPEMVfsBQ90Y9FqkJtEIFylJetLqILE7cIHKo4XEmSduL0PZzGxoNJ7CQIyGQ9msbDxxexmeXbNYsl5z6mocf68TqJJFroVKqFBGEjMY4wlvLYocx+GBW+ZBG0t8q8rzmD7Z0+BPbAtiqAgG3VRQpaelJeuDvsYIiSoaoqWEUe/pAzM1jcbYe3paQcBjKON4AaCxt4VkPABIjTcizZBC7pNi17BNQUZoaHTR1UbFKkFEMHv2bHAcB57nceDAAVx77bU+jy0vLwcAZGVlIScnh3SM8Qp1+wFDvVhsDnT3inSz/4ruXhtpOgzFDlyg8mj3xBmLzYHOHhusdifidbFIS6YVdXxhMkp/8Qu2kqXPEno6lhyMNnKVK+GCwYh0fLUoFuUYseKq6dj80Qmy13Lx3itPwm1BDGsOhAbdlOlp3X12/PnhJbDaB4O6xhSk5iEhLh59A/2iX3t/UwV+iBXD/z7QdET0mACwv/EIvnnBEp/fp47jPd52Gk/ueoFkPAC4ZvrQ3Kl9UnQSGwEzogxNDDNGZYyQlZWF2bNnAwC2bduG8+e9GyEdOHAAZ86cAQAsXbqUfIzxiNj2A1YREll0mK2gul4LN8BUUO3Abdl9JqjjDHotcjMSMS0vBbkZiRHveRNOJUtSgjqNoZctzPf4t1wJFwxGpOOrgqq6wYzXP6Y3QfZlji20IObJ8NmlMuimTk+z2geDvsZ0WrpJBBAA6LKa0WnpBjAkTJzsqCEZ90RHNSwO32X81HG8fyzfHLa3yGi0mlhcPXUxgBGfFAo0PI8klcXLM9SNYdo8aKLIDwRgIohobr75ZgCA2WzGI488ApfL86TS09ODRx55BACg1Wrx/e9/X5IxxhNStx8w1Ida02Eod+Coy6Op6TDT9oLef/Ml+MP9V+Kvj1+NB2+Zh5Ki4D178jIjQ1ww6LUoypE/VYfBiDS8nft4nsevN++HQ4LFWiBzbD7koFT6OQQL9fWxu9eGupZenKrrRl1Lr9/rkhRRsADQ1NtKOq6/8ajbTFr6O8jG+sm8m6HRDC3VDNp4zJs0i2Tci87bmSkqIyR0OdOVngI5rB1GJMuXL8c777yDnTt34sMPP0RLSwtuueUWZGRkoKqqCi+88AIaGxsBAHfddRdyc8eaJVGMMZ6Qo/2AoS7Umg5DvQMXTHm0UglI1DfaGamGsCslctLVKYJs2X0GM6dO9Hhsybw8VDccVWhGDEZkUNvUC5PRc5exorpdEnNhf949obbZiiFeR3Ndo74+rntht0flpT+DeamiYOt7aJN66nuaUZSW7/V7DYT+HZQszr8Ul+WXejyWRJQ6M2GQVYEwQsN6aj9S5vu2bIhEmAhCwO9//3v85Cc/wf79+3HgwAEcOHBgzDErV67Ej3/8Y0nHGC9Qth8wESQyMBnjodFwJIIDpXmlXBUqakhAstppq1RsIsYz6LWYUZCGY7WdhDMSj1DN4y5K+Yr5ZTAYI/SeH7sb//rHpyR5rdIZGV6F43DbbMPFaqd5HcrrI4AxraeCwfyuiibkZSTinu+N+DZJEQULAOeJWmwEzju8izUVLSfwpwOvkb4WFbvrD2Dp1CtQkJo3/NiBxgqSsY8n6HBdB62AxYhubHXH4bJboqolhrXDEDBhwgRs3rwZ69evx8KFC5GSkoLY2FhMnDgRV111FV555RWsXbvW7+KEYozxwHhqP2CMYNBrsbA4i2Ss0eaVYpCjQqW6wYw7nwwyAelJ6RKQevpozUh7+sWNt+Iq9ZVm8l78ZiamRM8NA4MhFUkTPE0fLTaHZCJnSuJYEVxsm204ULVlUl4fA1HX2ocHnvsCh6raAIDMo0Ig3zhU6Twhjva8OUGbMOax2q46PLnrBThdNH8HauyDA9hY/spw63anpRvdth6SsXtjNTBr2BKQERoDnY1KT4EUVgnig/nz56OqKngzLo1Gg+uvvx7XX3992K9JMUa0o0T7AUMdLCvLx64K8SWyyy+lid0DpK9QOVTVhl++vA8DjuBKV4Ub1J/9v/nkCUgDTtrFgV3kYmNmkQmZaQZJyuXF0N1rY4aoDEaIFGQnefy7vlW6GOx9x1pw+w2e3goUbbahQtWWCdBdH4NhwOHCL1/ah1/duQivVb5DNq4QBQsApgTaCrqJo8bjeR4b920iMzCVivqeJhxvP40Z6dNo/Vc4Ds26WBit6kxaY6gTp7kNyJ6q9DTIYDIgI6JQq0EmQ3pKCk2iDTEnZyaStidIWaFS3WDGL18KXgAREG5QqStCEg20iSyjd35DheM4PHDLPMTFqusyZnN4nqOoDWUZjGgjLVk/xg+ktUs6cbOzx4YOs+f4VG22waLhfCfihAPF9TEUBpwuPPH3f6K+l6YyFwDmZc8c/jo+lu53AwC6WM/r17G2U6Rzl5Jt1TsAAJ2WLtJxu1V27WSon2jz0mWfAEZEoVaDTIb0cByHe1bMDfs9oI+LweoVc8lbypaV5ZOM416hIqQiDISZijDgdOE3mw+QJiAVEqecjN75DYeiHCN+9oP5iI1VUZvgqN+5nOX1DEYk8u0risY8NuCQ9nNT29Q7/DVlm22wXFSQRlqFKvb6GA698bSeLWabdJU4tV11Hv/+uPpzyV6LmvKGw7A4rOR5RSq6ajIiBG1KhtJTIIWJIIyIQmg/oIDSIJMhD0U5Rjy0sjTkGz19XAweWlk6bOZGiRQVKhXVHaLbPJo7+3G0mi6qz2Q0kH1evO38ikFVN3OjRDY5FyUMRiTyzUX5Yx6TOsLe3YiVss1WScK9PoaFxglNShvpkPubjsDiGKqc08eKqxQczWdn9gx/bXFYUd54mHR8KXHxLnRZzZhoSCUd1+hkldCMUOAQl5at9CRIYSIII6JQq0EmQz7mTE/HHTfOgjbIUk5trAZ33DiL3CNDQIoKlde3nSSZ218/phlH4LorCknG8bbzGw5CmoPDqZ4FjF7r+T6gFG4ZjGjkWK23Mn9pPzPu7XhKVGsdP9MliTH7nOnpWL9qkeStMVycDRxHe94VFvsAkGowgiN8D9R0nxsWWLosZrj4yIqItTnsyJgwMfCBIZCmousmQ/3o8y6MqmQYgIkgjAhEivYDRuRwqKoNf3jrCBxBtoo4nC784a0jw272UkBZoWKxOXDsDE3v77Fa2hvtay8rCFp88oU2VoNZU9Nwqq4bdS29Yc9PiTSHYEhJ8qyWkTO5gcGIRF7/ZKwJvU7iagbPdjz5F4OCMbsUFOUY8dyaxXji9jKUzcweI8KSSAsx0lQR2BxDFToGbTxmpE8jHbupt3XoNVRuhuqLVIORbjCeR1KY7baM8Unyou8oPQVymCECI+IQ2g/EOLlTG2Qy5EHY+Q914WsbGMQTm8qxftUiSVpigJEduKdfPxjUe3NyZiJWr5g7Zj4NbbR90Q1t5zEtL4VkLI1Gg7tumo2n/now7DEcThfu+u0OtzE5LCzOwrKyfJQUmoL2bFEizSEQnA+zQzmTGxiMSKOyphMWm8OjMjMzTbodR46DRzueUmZ/UhqzcxyHkiITSopMsNgc6OyxwWp3Il4Xi4rTbfjju5XiXmBQmuWDXjtSoTM1dQoq24JPaQxEa38HitLyyVtt5MKgjccFaYU42Vkjeqx8qwP6aHO5ZDBChFWCMCIOtRpkMqRF7M6/bWAQv3v9oKS95oF24GI0HMpmZeOJ28vw7JrFXgWZc820C3tqoWDxxbm4ZdmFZOO5XDx2VTTh4ed3484N24NOtdmy6wzZHKhISdR5bbErKTTBxPyHGAyfNLSd9/h3apJ0nxeeh0c6jFL3AnIZs1tsDjS1n0ddSy+a2s+jq1d8JQTvjJVEPKJOhXFH+CvHayP3XMxpaJZt7O6XESo9O/+u9BTIYZUgjIhEaD8ItSpASoNMhrRQ7Pyfa+lDZU0nSopMRLMai78duLRkfUAfmj7LAOl8zltpxwOA73x9GkzGeDz75uGg25KCoa6lD2s37sRDK0v9erhYbA7sPaq+eMPuPvuYHW1g6D1x+dxJeGe7+B08BiMaae2yeFSsNY4SRag5cbYLl80eqgZRwryYA21E7mhcLhfe/6IW7+6oQZcEbTdcrHO0BzQJ3dYepBmG3gcHm0VWq4wiPWHoui/4jkQSeq0OFocVVR0015Bz8VrYOI5VgzCCxlZ3HC67Jap8QVglCCNiCdUAbHJmItavWiSZQSZDWj7adZZknC275asgMOi1yM1IxLS8FORmJAZlxJtoiCOdw4R4acx/F1+ci7fWL8d/X1tMejMvtC75qwjpMFuhxjAHnofPPv/0lOi5cWAwpKamsUfS8Zs7+oe/NhnjJVnQ+0PK09f2L+tx49ot+PP7xyQRQABI5gnS2j+UaGZxWHGup4F07OykoXjPmq5zpONKjQYcUuONpIauLo5Dr0h/L8b4Y6Azutp6WSUII6IR2g8qazqxZdcZ7Kls9oi6i9FwWFCSheWXTkFxYRprgYlQLDYH9lTS7PzvOdrsdbdeCiw2BzrMVtgGBqGPi4HJGB/wdSdn0br652UmBT4oTDQaDb51RSG+dUUhOswW1Db1ove8HUkJcfjz+8fQ5LbQCAWhdenZNYu9fmbNfeo1tvPV529Kjpd5JgxG5JCR6ikSUlaYecNdhBDMi3fLXF3W2WMjvw79/dNT2PzRCdIxvSKRJ4hwtm/sbSEdd3JyDgzaoXNw2/lO0rGlpjR3DgzaeDQ5W0nHtbPUMkaIOLpboc+mSfdTA0wEYUQ8YtsPGOqnw2z1ELfEILjyS/W+4HkeR2s6sGXXGeytbPGYdzAmoNS98KlJ8pjAmYyGYbPBiur2sAUQAX+tS1IaCorFV59/TAy74WQwfBGv82xJkfq8NSHe83N64ZRU2UUQ6vPY9i/r5RFAAPADevA8Rx6TK7Ss1Jtp/xYzM0Z8rOJiIuuecGnRFQBAbuiqU2M5JUPVRNs+MhNBGFGFQa9lokcUQh2DKtUiurrB7DcdRjAB3VXRhLzMRNzjJR3GYqOdm9Uuf4QsZeuSNxFELkPBcPDWGsTzPF5496gCs2EwIoPmTgtyM0aq1pISaNsCRzMwqtLkxFmaWHKlcLlcePbNwzK+YCxc3emISaWtTkiJTwYAnB8QJ6KPxhg/8t7KTc4mHVtKMiaYcNHEqQCGInI5cOAJmqk4FpHLCINYY3TZCbCGMAaDoXqojeukWEQfqmrD2o07gzZvFUxAD1W1eTweKYKPL6RoXRqNMVG9EYfe5ltR3Y6WTouXoxkMBgC0d3t+Pnr7x36OKDH3jRhGW2wO7K2kbb+Qm/e/qJW8hWg0SdZp5GNanUMeJom6BNJxJ8SNtFtdMLGQdGxpGdl6N2jjyQScDLuTmaIyQiYubZLSUyCFiSAMBkP1mIzxY+JmwyVGw5G78lc3mENOKgK8m4BGguDjjQ6zBfsqm/HBF7XkrUujMRnV669R29Q75rHXPz6lwEwYjAhiVJ11SydtJcBoOt0icinbLZXivR3yJk/FxWrw0HeuRnpCGum4NseQ31NOchbpuO7iQZohBRO0tCKLVLSeb8fx9tPD/+620hgG9zFTVEaIcDpDVCXDAEwEYTAYEYBgXEfBgpIs0pYpnufx9OsHw67gEExA+a92ZdQu+Ljjcrnw3o5q3PrYNvy/xz/BL18ux1+2niR9DTX7f3ij97ynaavF5sCx2sgy4mMw5GbiqPOUt4oqSnZVNA2Lz9TVd8FCJVB3mC0+U6mk4rtXTcfU3BT818zrScfVa4eq/FLjjaTjCm02AtddcBXp+FKy9dRnAIBOSzf6Bmiio/tjNDBr2BKQETy83QKXPboqWtkngMFgRATLyvJJxll+6RSScQSO1nQE3QLjC8EEFFC34OOOLDGM8L5Q6DBbJXs9sSRN8GzVqW8V995gMMYDWaYJHv/WxtJWxI3GOYhh8Zm6+i4YKAXqmgZp44S98cbHVahuMGNW1oWBDw4BQfywOmivKUKbjcCU1DzS8aVkX+MhWBxWnOmupxuU49CsYm8thjqJtohcJoIwGIyIoKTQhLxMcfGxkzMTUVxIW767ZecZknE+3FU7/LVaBR+Bv396Ck/99aDkPei+FgpK7dwGg3GCp6Fja1d07ZwwGNRw3FhDYTl8fwTxWYn2ugXFmWQCdZ9lIPBBxAw4XfjN5gPDFYzU2Jy0MejWAU8R5JOaL0jHl5ouqxl9dpoqEIH+2CiL+mBIjqOb1ghZaZgIwmAwIgKO43DPirlh79rp42KwesVcr7G04SKVCWhJoQmZaeJ6LzPTDOSCDyBvDKOvShYldm6DxXxe/gUJgxHJpCTqxnzOc9In+Diali27aUTsUEmeQCfyJBqkTdLxRXNnPzbv20o6ZpfVTDqeQG133fDXFocV5Y2HJXkdqWjta0OijvYzkeCMbB8chvxEW0QuE0EYDEbEUJRjxEMrS0NeBOvjYvDQytIxcbRi6TBbQbURxvMg7evmQH+1kjuG0Vcli5qNUUenXIgVsxiMaKer1z7GAyQzTR7jyj1Hm3G0ul2W13JnL5F4DgCFOcmBD5IEF7Y3fkI6Ymvf0N/C5qRth/mk+vPhr7ssZrj4yIqHbe5rx5SUXLoBeR5ZEea3xVAeFpHLYDAYCjJnejrWr1oUdGvM5MxErF+1CHOm05+8zX20JbvdvUM3fkdrOkRHqjZ39g/7jFAhZwyjFK1LsjBqq2TSRHl2tBmMSGa0ACyX0Oly8ThW2yXLa7nT1WtHh5mmVc5kNEhqgO2LmIxzoNbam84PRca3naf9m9T1NsHiGPKSom61kYPzAxakGVKQGEdzPUkYdMHoiiwhiKE8mjj1bkCFAxNBGAxGxFGUY8RzaxbjidvLUDYze0yaSoyGQ9msbDxxexmeXbOYvAJEgDq5xOYY8rr4aNdZkvGoS73limEM1LqkZmPU0SkXLBmGwQiMIAALGPRaXDqTNibVF0olUHmL0w6X664oJBsrWLRZZ8nHtHyVPnF+gD4iual3yM9AHyu93ww1cTFD7WKjU27CJVGmzQxGdOHoblF6CqQwa2AGgxGRcByHkiITSopMsNgc6OyxwWp3Il4Xi7RkvWSpKO5QRRwK6LUxkviMUPwu5IphDKZ1Sc3GqKNTLv66jTYymMGIRgQB2J1ll07B7gq6thFfZE9UpmVtdJy2GK69rACvbDkO56BMPg+xNkBLX1Fh0A3tNCfq6NuhWvs7UJSWj3it/FUzYkmJT4bFYUV9D006R6suFjaOg14iY1tGdDLYTyfcqgFWCcJgMCIeg16L3IxETMtLQW5GoiwCCECfYJCSpEeH2QqXi+bGxOXiyYQLOWIYg21dUrMxarxuZG4WmwM1jdF108BgSIKXxRgvg29DjIbDJRdmSv463hgdpy0GjuNIzVYDoUnolcQkcYpxKLo2J5m+CmjAOWRaLZX5qpQk6RLQZTGDB829Ac9x6I1lS0BGaMQkJCk9BVJYJQiDwWCEickYDw0HUGgWmq/iYBvaaGPwqEq9pYphjNFwWFCSheWXTkFxYVpQ6T0mYzw0Go5MLKLEah/Z0W5o61NwJgxGBOHlc//GJ6clf9kFJVnIzUgCBxAtL4OnINv3gsJic6DDbIVtYBD6uBiYjPF+xf2jNR2yVOoNo5XmelCQOiSCpMYbycfWxQ6l6LSdj8AWRY4j9zKxa6Is6oMhOdoUZQRjqWAiCIPBiHhCvWGkwqDXYkFJFknJ9sLioThY6ioHqpYd6hjGH147AxdfkBFW65JBr8XC4izsqqApDabEXXQ618xEEAYjGPRaz/OexeaQxU9n+aVT0GG2yC6AABhz3uN5HkdrOrBl1xnsrWzxEHk1Gg4Li7OwrCwfJYWmMWLxlp0yR/06pI3llaJaI4k4YlZWeHovE50KNxEY6sY1IKPQKgNMBGEwGBGJmBtGSpaX0fStLy8bioOlrHKI+aq6hALqGMZFs7JhMobfi7+sLF+VIoi76NTZo14DVwZDTaQkeZ6n6lulFxCz0hJQXJiG8mPKmP119tiGhZDqBjOefv0g6lq8/9wuF49dFU3YVdGEvMxE3LNi7rBvEqWPVLC4+pPA814LeETRZTXDoI1HTec52oEBCFE2yfrgkuVUBQekGox04/E8kpg5KiNEBtrroM8uUnoaZLCGMAaDEXFUN5hx54btePj53dhd0TxGMBBuGB9+fjfu3LAd1Q1myeZSUmhCZpo4Yz3hZhwYqXKgYEFJFllFDGUMY1qyXpQAAgz93oONSZYLDhj1O2LlxgxGMLh76QBAaxdNfKw/BpxDrWtStfoFQqgaO1TVhrUbd/oUQEZT19KHtRt34lDVUJxsh9nqzVIlIrE5hlo+2vrpq4Aae4fELqEtJpLQxUTenBnRh8tK266tNEwEYTAYEYXYG0Y1MtrsbFlZPsm4yy+dQjKOAFUM49fmTsKpum7UtfTCYnOENQbHcbhnxVxVmaSOXoeYjJGXQsBgKIG7l45cdPbYcLS6g7zVLxSqG8x4YlN5yIlXtoFBPLGpHNUNZpj76FNaAqFJ7JLEGFWvHWr5ECJhKTlrbgQA2Im9NeTAGJ+MLouZbkBmjMoIA40+glvKvMA+AYyoosNswb7KZvyr/Bz2VTajwyz9bhJDPihuGKk5WtOBlk5x77OWTgsqa0Z2viiqHCZnJg5Xl1Bx7WUF0BLcOL29vQY//f3nWPXkdqxY90/86pX9qKhuBx/idmZRjhEPrSxVlRDibk6otkoVBkOtjDZwFltdFyx/3XaSvNUvaHgeT79+MOzIb9vAIH73+kG0dMm/O8vppGn1EwxRcyVJhxkSP3pskbebHR+rZ8aoDMWJS89TegqkME8QRsTjcrnw/he1eHdHDbq8uKOnJetx3RWFuPayAmg0TPeLVHiiG8Zn1ywm9Qj5aNdZknG27D6DkiITgJEqh7Ubd4b18+rjYrB6xVxyLxSNRoOblkzDa1tPko3pr9c9GOZMT8f6VYv89tPLSXevDbkZQ+JHTjoTQRiMcEhNkqeK6tiZLhj0WsRoOAzKbBR57Gyn6HPWuZY+HD/TTTSjEOClWUBbHTYYtPGYbMwhHzs9YWhT4PyA8teJULE6bcwYlaE4sRNSlJ4CKWxFyIhotn9ZjxvXbsGf3z/mVQABhnZm//z+Mdy4dgu2f1kv8wwZVByt6SC5YXSvuBALpSHdnqPNHq0h4VY56ONi8NDK0pCEhGDheR5fHG4kH1cg3NalohwjnluzGE/cXoaymdmSlGkHi80xIloZ9FoUKbXLzGBEMBYbTbR3MFTXm2UXQABgzxGaa8fpevlFEFe/73hfMZw1D92jmW095GPPyJgOABgYlO+9RYXNYUe8llAY5HnEDTIRhBEaroHoMntnIggjYvn7p6fw1F8PwhGkw7XD6cJTfz2Iv396SuKZMaSAsuKCig6zlSTFBRiqiOgcJeQJVQ7BtlVMzkzE+lWLMGd6OsmcRkMhRAUi3NYljuNQUmTCjV+fikkTletbHR31+fV5uQrNhMGIXFo6+2V7rT1HpRN2/XHiHI14Udcif3sHbzFKYsba0d8FADjTTb9hVZA6VMo/IS6BfGyp0Wt1tLHBHIc+5gnCCBGXPbpEENYOw4hItn9Zj80fnQjruZs/OgGTMR6LL2aLk0hBiooLitSUcFtzfDG6Lx4YqXKorOnEll1nsKfSMw0nRsNhQUkWll86BcWFaZLGAVMJUYEIt3XpUFVbWJ4xlIyO+hzjlspgMALS1i3fzfbZpshrj4hWHF9VafRLuOOcm5wt2dhSER+rx7luWrGuSxuD3IHIq4phKIdGF6/0FEhhIggj4nC5XHj2zcOixnj2zcO4Ys4k5hESIUhRcUEhglAbcsbrvJ+ShSqHkiITLDYHOntssNqdiNfFIi1ZTxaD6w9KISoYhNYlwSclEOGa5lKi4UZH5AJ7KlsUmg2DEbnI2dKmRCtMpMPF2ST5GwlJaYY4+sVWl9UMgzYe2UkZ5GNLTbeVvj2IKfSMUIlNTFV6CqSwFSAj4nj/i9qgW2B84XC68MEXdG0RDGmRo+IiHEzGeGiIHNZjNNyYBbQ3DHotcjMSMS0vBbkZibIIIACtEBUswbYuiTXNpWJBcZbH38Nic6CypkPBGTEYkYkpWb4dx4y06NrdlAW9VNUzQ9dT01cpMZSYvxISDNp4TE+jiXuXi/qeJmRMCG5DIFhSHeLuoxmMSIeJIIyI470dNSTjvLujmmQchvTIVXERKga9FguLaaL8FpRkySZohIMSAsNos1hfyOFVEgwXTfGMJO4wW8E2mRmMwIw+J8sZW1swySjba0ULmgSzJONOiBuKRuZBX2ZiHxwY/nrepJnk40tJY28LUuIJPxM8j0SRm4mM8cdApzL+SVLBRBBGRNFhtowxjwyXzh4bOswWkrEY0qJExUWwLCvLJxln+aVTSMaRCmohKhi8mcV6Qy6vkkAcP+uZPKR0ZQqDETl4qoUmowHaGHl6YuLiYhEr02u5k5FCcx0yGeWJE/ZAR3MfNmbYmDgAwPkBerNXXcxIxOyXTUfJx5eSbmsPrA7C3znHYUCB9zwjsnGaQ0vuUztMBGFEFDUNtH2RtU29pOMxpEHNFRfFBWnQinRZ18ZqMKMguF5Li82BupZenKrrRl1Lb1CVEhRQClGhEKh1SW6vEn/srWzx+HsoIRwxGJHI2WbPa7HF5oBTpjKqgQEnnArEhWam0aRYpY02Y5YBjpPm99Vyvh0AYHfSX9eM8UOxvhaHFSc6IqsS2DHohM1pJx3TrsD1nBHZSJEIpSTMGJURUfRZBgIfFAK952kvKgzpuPrSydhV0SR6nGUL88VPxo3K2k4Sj5pjtV0+TUB5nsfRmg5s2XUGeytbPLw5NBoOC4uzsKwsHyWFJsnSYQQhiuJvEAqBWpeU8CrxxWjTXUE4Usv8GAy10tzhGYnbYbbKdsOt1FKwnagSta+f9r4oGHh7nCTjNvYNCdpSxNjGxw6JRY29kWdWHa/VQR+rC3xgCOjYdYkRItqUyDMV9gcTQRgRRaKB9sKbNIH2osKQEnXuWlC1YmzZfcarCFLdYMbTrx/06XnhcvHYVdGEXRVNyMtMxD0r5qIox0gyp9EsK8uXVQQJpnVJbS0n7pUrSglHDEakI+fnWqmlYFMHjQjS1Cl/Wy9vo6liGY3FMRSNm2ekj7G1OofaSdrOdwY4Un2kxhsRryWs+OF5xClQ/cSIZDjEpUVevPT/b+/O45uq8v/xv9Ik3fe9ZSvQhV1AKLtsorIO4IACggj+RhRBQBF0cED8jOD8HNEBxnEYB0UZwRkBAVkGEBGsUEAcWStLsRsUuq9p0yTfP2ouSZumSXvvTdK8njx4PG6be09O8m6W+77nvI81nA5DLkXsYmkdYgNFbY+ksz/lpijt7PtenHYAcadiWCoCei7tDl7ZeMLmop8Zt0vxysYTOJcmzbzN7h3DER3mK0nbltgydcnZppzUHbkiVs0YopbMz9f8dS7n67qaq2TYT6LzZw/Uxl2KZWyLJFlmVh6+Xr6sCUIOpY5sBw8v+b7/yYFJEHIp4cG+ohW1DAvyRnhwy3pBt1RSJxuaSsypGHWLgF7LKsKbH6XafUVUU63Dmx+l4lpWkSj9ciRbisU6qlZJQ3y8zE/e5E4cEbkiL5V58jA8WL5la/OKyhvficwovKSZSqxS1r5/FlQUid62cXWYIO8A0duWmsJgQJFG3Bp2pUyCkB0Ung4owCwxJkHI5UwcKs767pOGxovSDklPymRDc4g9ZNs4lcJgMGDdZz80uX1NtQ7vfvYDDCJPqj9/PQ+3ZRp63S46AN06hjW6n6+3Gv27RcvQI9tUVjnX9BwiV1ClNS+ALFfBZwCifR64E4WH9YLVTWaoPTH/QYrVW379OPRSSVPPREpl1ZUo1oi7DHyZB08ByXbVWVegr2pZK2ryFUAuZ/xgcZYSHTc4TpR2SHpSJRuaS+wh28apFOev59k8BaYhv9wuxYXr4s59/uq7dFHba4i3pxKLpvW2uchr5zjbVtaRQ92/LTkTR0SuqrpOcWmxV4KzxuCk9aacmVTPmfrXkSBZUhQv/bXLVSKvsiKH0qoyVOvE7Xe1E42gJNdQU1rg6C6IikkQcjkX08V5EV5KLxSlHZKeVMmG5hJzKoZpEVAxi62KpUKjxcnz0i9F6+2pxKuzk+0q7npZpPcEMdT92/rqhDyJIyJX5llnmXGxV4KzJjac09XsppCmjkqwV22dNq1O/JEmXsraESB3y53n88JWWr0WnkpxC/l7si4q2ammtGWdNzEJQi7HGU8QSVpSJRuay7j6hxiMRUCduv6JxF+a2kUHYM38weiVFGnzMRUaLU6K9HyJwbQmiJixJGrJAv3MpyiIPZXPmphwaVY6ackUSmmmw3QIawcACPEWtwh+rdrvEPkS1BuRmtpDjSBvcf9O/WpYEJjsY3DBUVTWcIlccilSnCA2tvoEOZ6YS43asuKIPcRaNtZYBFSK+idiPN6iUmk+/JQeCvTvHoOxA9ujW8cwm6fAGB3/MVvy5Iw9CkqqhILLeUWVkPFcjshlBdVJglRp5autUyjRe1vLJs1UirZBrQAArYPFubhgqqSqdoqpFKNMpBbg5Q9vlbiFKb344UR28lCLOxrJ0ZgEIZfirCeIJD2xkw1i6d4xHG2jA5pVw8O0CKiz1j8pLBW3eODM0Z0xoHsMwoK8m/wavJZVhL/vlKCAXjPkFlQgsW0IAOkSR0QtjbeX+XvAnQL56ujcusvVYexl0Es0kPzX3EqEn/h1nkqrygAAnirnWlbdFlH+4dCIfBW+mnMByE5K/xBHd0FUfAmQS3HWE0SSnjHZ0By2rjhiD4VCgcXTeje5bkndIqDOWv+kWivu0NnQQG+0iQpocgLEuIJO3YKKzqSojKtOEDVFSbl8q8No+D3AfjpprqFqtLUn+t4q8a84F1XWLjHrqXS91WHaBMWiWOQlcrk6DNlF4QFVgPMUoRcDXwHkUpz1BJGkJ3ayQUzxrYPx6uxku/tmqQios9Y/8RL5tdfc9sRYQUcKUaH3iixWVTtvgobImfnK+NmsM/B1ai9DjbhTM4y8fx1ur5Bguk3JryNBXHEWiLfKC9U6cRODWq4OQ3bwS+oHD6+WVUSaSRByKeHBPhDrHNZDAdFOEEkeYiYbxNYrKRJr5g+2ebRKQ0VApSi2KoboMHE//EyTBU0hVoFkMSkAtI68V7xO7MQRUUtVdzRGoL98V+sLSjhtzW4aP0ma9fm17oUUI0E0utqReV4q15sCnVt+V4LkjQtmg8hhAu5/2NFdEB2TIORSfL3V6NJenOkMXTqEsR6ICxIr2SCF+NbBWP/iMMyd0LXBBFtYkDfmTuiKv7w4rMGkzJhBcaL0R8z6J60jmzcVqa6rmYU4deEW8orsn/vvrKuudO1o/p7S3EQPkbvQ1CmEGuArXxKkXKQVtNyJvtJXkhEVlTW1iYpQ32DxG/+1v6VV8tWbEUuJpgxavcg1QSQqbkvkKjgXgFwO37YpvnUwNrw0HBeu5+Or79Lx/YVbZgVzm7viSFNdyyrCus9+sDpNI79Ygw93X8Sh1AwsntbbYiJE7GKrYvD1VqNbhzBcuJEvSnt/23GvoGlYkDcmDu2ICUM6wMOGecpiFkgW07RRSWY/c6QZkY3qnFEH+MmXBPHgtwq7KVQ1oo3KNWWsCSIFTU01AOCXomzJ7kMqgd7++Plunqhtlql4HZxsV/rDQfjGdXd0N0TFVwC5lAqNFpduFojS1qX0AlTwCpBLMxj/1fkCrTcYAEPt7XI5l3YHr2w8YXPiIuN2KV7ZeALn0u7Uu81Z6588/lBS4zs1gTEx9Ojyr3D0bGaj+4tdIFkM0WG+6B4fbva7Cg0LLhLZpM57ldjT76wJ8OOIUHspvKUdTZFTkit6m0W/FhYtqRK3wKgcovwihFEyYtEoeQpItiu/fBJ6FxxFZQ1fAeRSpFgil1zPtawiPP/2Ufz+/RSk/HSr3rBcgwH47qcc/P79FDz/9lFcyyqSvD9vfpRq98m5plqHNz9Ktdg/Y/0TTzuv1niqPCSrf9IjPlzSk5ManR7v/OsH/PvIz1b3E7tAshimP9ypXtKJS+QS2ajOm7icRctD/Dliy24e1ZI0a1wGNrdM3FEPAKDT134+eyhc8NRHAQR6+Te+nx38dCwITPYwoKZUnIvQzsIF3wnInXGJXBJzxIUYjEu1NvVvU1Otw7uf/VBvNIvA3sEcEo7sVigUWDarr92JGXtt2XfZ6ogQMVfQEcuHuy/WiyGTIES2qapTEyTnbrls961SOdd7iStQqKRJgpRUSbfiV8CvSYQQ70DJ7kMqGm0VYgIiRG0zvIojock++qpKR3dBVEyCkEvhErnuTYoRF80lxlKtv9wuxYXr5rU2jI+1Wmvf1ZpqrV6yxwrUjlBZMacfPNXSfny8t+0c9HrLj13MFXTEUlxWhf9dNU+05Re3rC8MRFKpqvOeXlohzUm2xfuucr7pdc5O4SlNfIxp5Eh/8epZGQV6+v3adngjezofb7UXyqrLRG2zXOl8IyrJyclUX08uTII4Gb1ejy+++AIzZ85EcnIyunXrhuHDh+PFF1/E6dOnHd09hxPzCrDSQ8HChS5E8hEXTfTVd+mit+Osj9WoV1Ik3np+CNpGibtijCmd3oAvv73e4O2jB7aT7L6bauO/fzL7uZAjQYhs4uVpfkHCUyXfCVoZa/fYzaCQZipFlF9tgqJVYLTobVfpahM3kX7ijqiQhQG4kndD1CYzvXkRkOxjqG5ZJQSYBHEipaWlePLJJ/Hqq68iNTUVxcXF0Gq1yMnJwd69ezFz5kysXbvW0d10KF9vNTrHhYrSVue4UC6R60KkGnHRHBUaLU6eF2ep1u/P5wiFep3xsdYV3zoY7y15AP26Rkl2cWDboYZrg0iU32mW2wUVZsWW1ay+T2SToDrFSYMC5FsdJq9Yvqk3LYZOmiRVbGAUAMBX7QMvD3H/BipqakfmRfqL8x1SThnF2civKBK1zSI1kyBkH11FsaO7ICp+Q3MSBoMBixYtQmpqKgBg8ODB2LhxI7Zv345Vq1ahVatWMBgM2Lx5M/7+9787uLeOVV4pzjzGMq4M41L2fXdTlHa+ShFn5Abwa6FekU7G9QYIhXqd8bHWte1QGiYt+wqnLuZKlpCo0NQgr8hyNfLtVhIkjnThxr2Cfu2iXW/uOZEj1B31Vnd6jJTKKjkSxF4GvTSnD5Xae1eadQZx/wYUvxbMyi65LWq7crhdeheiF/xqYLopUUP0Ei5h7QhMgjiJPXv24MSJEwCAyZMn48MPP8SDDz6Inj17Ytq0adixYwfi4+MBABs2bMDt2673Ji6GCo0WN2+Js7zZzZwSLpHrIio0Wnx/QawRF7dEi7vYhS8LSzRO+1hNvbftB2w9cEX0di358ee79X5XodHiwg3pRrk0x+lL95Z27NLB9a44EjlCTp75aIw7hTLW0xErk+1GFN7SjJ7ZffG/AIAKbSVqRE6CeChqR6/8cOuCqO3KIa+iADqduM+HzhmHU5JTa2l/MUyCOInNmzcDAPz9/bFs2bJ6twcHB+P1118HAFRVVWHLli2y9s9ZZN0Rt3J41h1xC02RNJx1aWSxVxfSaHVO+1iNth1Kw+HTDa/cIrb0nPrDL8V+HxDT3YJ7I1c43Y7INtV1VoeRs/xe3Xok1DgPL8sj9Jrr3O2LAIAbBRmit21cYrbQBYf03y69i8oacRNPGhnr7lDLYNDKV7BaDkyCOIHMzExcunQJADB8+HAEBwdb3K9Pnz5o3749AODAgQNydc+p3M4X94M3t0CaD3ISl7MujSz26kLeaqXTPlYA0Ol0so0AsUbs9wExefvcS3zkFXF1GCJbxIT7m/0cHuwj230H+MlXf6TFkKgQlEZXO7pSiiRI+5A2AABvtesVxC+rroBWL+53g5oWttIHSc9QwyQIiezs2bPCdv/+/a3um5ycDADIzs5GRob4HxJEzshZl0YODvASpR2jkEBvp32sAPDBLvmHEbePDZb9Ppuje8d7SzuKndAiaqk6x4WY/Rwb4SfbfWt1LW2Qt/T0lf6N79QEYT7BAACtXvw6LT1jugIAekR1Fr1tqfmqveGnFjcx6MPpMGQnpY90KwI6ApMgTuDatWvCdlxcnNV927RpI2xfvXpVqi45rSCRr9iI3R5JQ+yrgmItjewr8hJzPl5Kp32sAHAkVf7Ea1K74Hq/iwr1lb0fturRMVzYFjuhRdRShQebv6blPD+rrmZhVHvpcttIEqOH4ocCAKL9wxvZ036tg2IAAMM7DBC9bal1j+6MDqFtRW2zlaZlXdUn6XlGtHZ0F0TFiZBOwLTIaWxsrNV9Y2JiLB5ni5ycHOTk5NjXuV+lpaU16TixlZSLW4iyuKxlVTpuqfKLxZ1WkF9cKUq9hutZRc3vjIkb2cWICRf3CqhYjzUztwTVNfJXky8sqUKbKPPfFZc571r1aTcL0SaqdlUYDU+uiGxy/FwmhvS6d5HnF5EKoNuCswKaQBMsSbPDOw4EAHirxB1lCQBZxbfQOigGhZWuVxNkWPv+SPnljKhthms5UpHs4+Ep3zRFOTAJ4gSKi++9Ifv5WT8B8vW9d7WktNS+4oBffPEFNmzYYF/nnMzVTHE/vK5nF2NIr5aV2WyJ/nc1r/Gd7PDT9XzhRLU5Lt4oEKE391xKLxB9VQSxHqvYMbDVjZxi9EiIMPtd6sXcBvZ2vNTLuXiwXzsAwM8ZRY7tDJGLOHLaPAki1ipwtvBUKwFwpTh7KDw1oiePAj3vTbH5OV/85d0v3v0ZrYNicDr7f6K3LSWlwgNhviGo0on7N6pVcjIA2UdbeBue4S3nnImvACdQXX1vSJq3t/Wh66a3mx7nLsRejYNL5LqGolJxr/wXijSyRIq/R2d9rGL3y1Z1V40AgIIS5x0JUmoyWs1RzxmRq8mv85rWyjjqzN+HqzjZTSn+KLcNo98QtqUYrWFcFcbVRoI81nUCAEAhctZJwVNAspOuXL7ktBz4CnACSuW9eeONvckZTCZheni4X/hiwsWtBRAbIU1xLxJXcIC41dxDgsQZ0ifF36OzPlax+2WruqtGAEBooPNW9zftr6OeMyJXE1bnNR0pY92f2IiWVexPFjpxB5JH+oabXeQL8QkStX0ACPENkqxtKU3oPAqA+HVSwjhdk+yk9Gv+qGJnwukwTsB0iotGo4GnZ8PFOquq7l1ltLafJY8++igGDGhaQai0tDSsXr26SceKqW+XaGzee1m09u7vFClaWySd+xLE/fDvYbKCR3O4wt+jWI9V7BjYqu6qEQDwQK9WOHjKOVfHGta7lbDtqOeMyNWM7NvG7Gc5XzvD72+FE/9rWr00Z+HhoYBeL181WUO1NwwGBRQKce7zT4+8avZz31b3YeflA6K0bdQ1IlGytqWyoN9TwgXPThHx4jVsMKCdhkkQso9XVHtHd0FUTII4AdM6IJWVlQgMbDjTVlFRIWwHBdmXzY6NjW208KqzaxMVCJVSgRoRlrRTKT1EqZVA0msTFQhPlYcohTk91eLFXaq/R2d9rGL1y1aBfp71Vo0AgB4Jzpu8NO2bI54zIldkWg8EkO+1o1YpkNw1VvbXqYcC6N8tBinnbzW7rYE9YqCAAt/9JGMiR6+CvjASytDm12fq36Y3fOss/xofFgcFFDBAnCSLp1ItrA4jdttSmd59IobEJQs/h/mGIMDTH6XVZc1u20+nR7Cen0tkO2VAGFSB4lxUcxbuN5/CCbVqde/K4a1b1j8QTW+PioqysmfLNSq5nSjtPJQs7nJjJK2RIsXrwb7ixl2Kv0dnfaxi9ctWU0YkNHhbJwsjRBytc7v6fZL7OSNyNZEhlqeNyfHaMb5/y/067dslCmMHi3NVddygDhgzKE6UtuxRkyvOc/bwr8vi1tU7tpso7QPA8DjzUdBitm0qMUycmHaPTMLELg/X+/3Ezg+J0v6wworGdyIyEdRvvKO7IDomQZxAQsK9L/oZGdaHeGdmZgrb8fEiDo1zIc9MEufD63citUPyeGaiSHEXqR0jKf4enfaxityeNSqlAhMe6NDg7W/Oa9rUPin98dn6fZLzOSNyRX9dOszi7+V47RjfI+V+nS6f1QfdO4ajbXTz6pG0iw5At45horRlL31pKFoHxjSrjTZBsegSYTnZ/eKA3zWrbVOze02VrG0jtYcKK4cuFqWtVx9YYPH3YxNHQqlQWrzNVkq9AYNEKphObkKpRmDfsY7uheiYBHECPXv2FAqinjljfR3w1NRUAEBMTAxat245yxTZQ6lUYsYjnZrVxoxHOpkVpCXn56xxl6JfLfmx2mrhY72sFn9Wq9UY2L15X8DFNLB7DNTq+qtMyPmcEbma+NbB8PLysnib1K8d0/dIOV+nowfEQaVSQaFQYPG03vD2bNr7tLenEoum9YZCoWh2W00xekB7PN9vNrxUluPXGC+VF+YnP9ngggAqlQqjOg5pThcBAI91G1/vs1Cstk3N6zsTarUaj3Vr3hVzS/018vDwwHPJs5reuMGA394p4ckf2SVi7HMtcjGOlveIXFBMTAx69uwJADh48CDKyizP9ztz5gzS02vXTn/44frD5NzJ46OS8GCdQmq2erBvGzw+KknkHpEcnDXuUvSrJT5WW80a0xnD72/8Pl6ZnYyOrRxf6b9jqyC8Mju5wdvleM6I5CTG6y40wAvrFlueCmEk1WvH0nukHK/TXokReO639wk/x7cOxquzk+1OXnh7KvHq7GTEtw5udltNYXwcHULbYumgZ+xOhHipvLB00DPoEGp9Ss3/12c67ovq0uR+Do8biEe7jpGkbVOm9Tse7ToGw+MGNqkda/01GhKXjOndJ9rfuMGAR/LL0KusqvF9ySkpQ5p24Sdk2AyEDJvR5GMDuj/QpGOdHZMgTmLmzJkAgKKiIqxcuRL6OgWLiouLsXLlSgC1V0CfeOIJ2fvobF54vLfdV25mPNIJLzzeW6IekRycNe5S9KslPVZbqFUeWDK9N6aMTLT5mHeXDHPoiJCB3WPw7pJhje4n1XNGJLcZj3TCu0uGYcn03lArm/Y1Mr51MD5e9YhN+4r92rH2Hinl63T0gDisfqb+yXGvpEismT/Y5uks7aIDsGb+YPRKql8g2t62woLsX8a77uPoEd0Zrw9fgjY2To1pExSL14cvQY/ozjbt//thC5o0auOxbuPxbL+ZkrRtpPZQYUG/p+rV73i230y7R4TY0l+jiV0exoJ+T0HlYdv6Fiq9AY/llmBYEafBuCr/Xg+j3XMbEDHhBUBp47omSjUiJryAkEGTETJocpOPbakUBoPBucsju5G5c+fixIkTAIA+ffpg1qxZiIqKQlpaGj744ANkZ2cDAJYsWYJnnnlG1r6dOXMGM2bcyyJu3boVffr0kbUPDdHpdPj7rgs4nJphsbq7p9oDD/Zti99N7MYpMC2Is8Zdin65+mN9ekIX7EvJwM5j15BfrKm3X1iQNyYNjcf4Ie2bPORSq9Xi93/7HpdvFjbpeA9FbbHC5bP6wGAwNNpW57gQ/HHeAItTYKzR6XT4YOdPOHgyAzKuaNkkHWP9EBrkhzNX7sDSNwUPBRAe7I28Qg0cvc5A6whfRIX64Ief8y321VamryWDwYC1W84g9VKuXW3enxSGFXP62/R31Bi1UgGtCKtPmUpoHYiCkkrkl2htPqah9xi9Xo89x9MbfG3XFRnijb8uHdbgFBhrGnu/aUr/m3pfxvbmjOuE/3/ruQb/RkzfV1Qq6ycfBoMBF67n46vv0vH9hVtmS94qPRTo3z0GYwe2R7eOYQ1OIWlKWwaDATuPXsXWg2kN/q0pUPs4Xnmy4cdhMBhw6e5VHLx6DKnZP0JvuPe8KRUe6Nu6Jx6OH4ouEQmN9t+Smpoa/Dnl7zh767zV/Ua2G4in+06367OwpqYG677fhDM5521aNSbUJxjjkx7E6IThVj+zdDodPjr3Ob5O/x5aff3Xm6dSjeFxAzC719QmfXbr9Xrsv3oUe9IOo6CyqN7tIUpvDC4sx4A7+fWueisDwuAZ3QGanKswlNc/1iqFB2Bw9Lu+G1B4wCf+fkRMfsnsdafX61Fy+isUn9oNXWlBvcOUAWEI6jcegX3H1vv7bM6xjiTFeSiTIE6krKwM8+bNw+nTpxvcZ/bs2Vi+fHmTPkCaw5mTIKYyc0vw0/V8FBZXIiTIBz06hnEZXDfgrHGXol+u/ljziipwI6cEJWVVCPT3QofYQIvL4DbHT1fv4MT/cpBXVAkDDPBQAAaDAuHBPhh8Xyy8vVRIvZSL/KJKhAX7ILlLFBLbhjbalvF4sZbozcwtwbFzWfg5sxgaTTV8PFWICvNDu9ggs+fv54wC7E+5iWtZRYACiAn1RXS4HwqLNbhTWAkPDwW8vZSoqNSisKwaCgCJbUMwfkgH4XFZehzeXips/+8VXLh+F1U1tSNxEloH4fGHOtV7jD9nFFh9zkzj76n2gJ+PJ7zUSgT6eyE7twQnL9xGYWkVvLyUCA/yRrC/N2p0ehSWaFBQVg1PDwU6dwhFl7hQnL+ej+s5JVApgIgQH/h6q1FaUV27rKVBj4KSKmh1OkSH+mPY/a2Q3DXWpr7W/X27KH+UVNbY9Fqqe2x0iA8u3SzA1awiwFA7smH0wDib/o68PVUICvCEn7fa7H6tvTbq3n9imyBA4YHsO6Uo19TAz7v2C3JeUQUqNDqEBfsgxN8Tv9wutfq3e/xcJo6czkR+iQZhgd4Y2bcN4mKDmvQeY9r/jNwSXMssRGlFjdBu3WVwm6Pu+02gjwq/5JYhv6gSapUHvL2U8FQpRXmPtPW9rbHXiD0qNFrkF2tQWVUDHy8VwoK84ettX8K1KW3lFVXg+I/ZuHA9D1VaPdpF+2No7zZ2P44KbSUKKoug0VbBW+2FUJ/gesvgNse1/Js4eiMFN4uy4KHwQGJ4ewxvP1BYBre5bZ/N+Qn5FUUI8w1GfGgcoABKNGUI9PZHXHAbhPnavzpZVvEtXLz7MworihHiG4SuEYmi9Ncov6IQN4syLfazpiQfVbnp0JWXQOkXCK+o9mbLnVq6HQCqctNRdfsmasry4eGhgjq8FXzadYNneG1Nwuq8LBSd/gqVv1wEarRQ+IfAO6odlD6B0FdVoqa8ELriu9BXVcDg5Quf6Pbw7zwIvnHdhPuszstBTcldGLQawGCAwtMX6qBwqMNihX4a963bF2VgOCqunRXuXxUai6C+o+EZEo3KXy6gprQQqoAQ+LSrLXxcevE4qnKuQa/VwEPtDVVgBJT+v07tM6A222dhW6FWo6asGNo7v0CvrYLSPxResR2h9g+t93wZn0NtRQk018+hpjAXUKmhDomBQa+DtvAWYDBAHRaLwPtGwjeutm+anGsov3oaNSUFUAWGwi+hL7xjG18Ao7HYSnWs3JgEcQN6vR67du3C7t27ceXKFZSWliIkJAS9evXCjBkz0L9/f4f0y1WSIERERERERNQySHEeauPEIJKLh4cHJk+ejMmTW+4cLCIiIiIiIiJHcJ7JPkREREREREREEmIShIiIiIiIiIjcApMgREREREREROQWmAQhIiIiIiIiIrfAJAgRERERERERuQUmQYiIiIiIiIjILTAJQkRERERERERugUkQIiIiIiIiInILTIIQERERERERkVtgEoSIiIiIiIiI3AKTIERERERERETkFpgEISIiIiIiIiK3oHJ0B8g1VFRUmP2clpbmoJ4QERERERGRO6h73ln3vLQpmAQhm2RmZpr9vHr1agf1hIiIiIiIiNxR3fPSpuB0GCIiIiIiIiJyC0yCEBEREREREZFb4HQYssmIESPMfm7bti18fHwc1BsylZaWZjY96Q9/+AOSkpIc2COyhvFyLYyX62CsXAvj5VoYL9fBWLkWxqtxlZWVyMjIEH6ue17aFEyCkE1iYmIwY8YMR3eDbJCUlIQ+ffo4uhtkI8bLtTBeroOxci2Ml2thvFwHY+VaGC95cDoMEREREREREbkFJkGIiIiIiIiIyC0wCUJEREREREREboFJECIiIiIiIiJyC0yCEBEREREREZFbYBKEiIiIiIiIiNwCkyBERERERERE5BaYBCEiIiIiIiIit8AkCBERERERERG5BSZBiIiIiIiIiMgtMAlCRERERERERG6BSRAiIiIiIiIicgtMghARERERERGRW1A5ugNE1DyxsbF4/vnnzX4m58V4uRbGy3UwVq6F8XItjJfrYKxcC+PlGAqDwWBwdCeIiIiIiIiIiKTG6TBERERERERE5BaYBCEiIiIiIiIit8AkCBERERERERG5BSZBiIiIiIiIiMgtMAlCRERERERERG6BSRAiIiIiIiIicgtMghARERERERGRW2AShIiIiIiIiIjcgsrRHSAi27322mv4/PPPMW/ePCxevNjqvnq9Hjt37sSuXbuQlpaGiooKREREoHfv3nj88cfRt29fmXrtHvLy8vDZZ5/hxIkTSE9PR0VFBfz9/ZGQkICRI0di6tSp8PX1bfB4xks+ubm5+OSTT3Ds2DFkZWUBAKKiojB48GBMmTIFSUlJVo9nrByvpKQEY8eOxZ07dzB+/Hi8/fbbDe7LeMnj2LFj+N3vfmfTvoMHD8aHH35Y7/eMlfyuXr2Kbdu2ISUlBbdv34Zer0erVq0wZMgQzJ49GzExMQ0ey3hJb/369diwYYPdx02aNAlr1641+x3jJZ/Kykps374dhw4dwtWrV1FRUYHAwEB06dIFv/nNbzBmzBgolcoGj2espKcwGAwGR3eCiBp36NAhPP/88wDQaBKktLQUzz33HFJTUy3erlAoMHv2bCxfvlySvrqbw4cPY/ny5SgtLW1wn1atWmHjxo3o3LlzvdsYL/kcPnwYy5YtQ1lZmcXbVSoV5s2bhwULFli8nbFyDkuXLsXu3bsBwGoShPGSzwcffIB33nnHpn0tJUEYK/n99a9/xcaNG1FTU2Pxdn9/f7zzzjsYOnRovdsYL3k0NQkydepUvPHGG8LPjJd8bt68iXnz5iE9Pb3BfZKTk7FhwwYEBQXVu42xkgdHghC5gGPHjjU68sPIYDBg0aJFwpvn4MGDMW3aNISHh+Py5cvYtGkTsrOzsXnzZoSGhtp85Y4sS01NxaJFi6DVaqFWqzF16lQMGzYMwcHBuHXrFnbu3ImjR48iOzsbc+bMwY4dO8yurDFe8jl37pwQK6VSialTp+KBBx6Av78/Ll26hE2bNiEvLw8bNmyAn58f5syZY3Y8Y+UcDh8+LCRArGG85HXp0iUAQHh4OP7xj39Y3dff39/sZ8ZKfhs2bMD69esBACEhIZgzZw569eqFmpoaHDhwAJ9//jnKysqwcOFC7NixAx07dhSOZbzk8/jjj+PBBx9sdL+srCwsXrwYWq0WERERmD9/vnAb4yWfiooKPP3008jMzAQA9O3bF48//jhiYmJw8+ZN/POf/8S1a9eQmpqK559/Hlu2bIFCoRCOZ6xkZCAip7Z582ZD165dDYmJicL/d955p8H9v/zyS2G/5cuX17u9sLDQMGbMGENiYqKhe/fuhlu3bknZ/RZNr9cLz2XXrl0NJ0+etLjfhg0bhJgsWbLE7DbGSz4TJ04UnutDhw7Vuz0vL88waNAgQ2JioqFnz56GoqIis9sZK8fLz883DBw40Oz98MUXX7S4L+Mlr1GjRhkSExMNTz/9tN3HMlbyunTpkqFLly6GxMREw/Dhww0ZGRn19tm2bZsQkwULFpjdxng5l6qqKuHzrVOnTvW+izBe8vnggw+E5/qll14y6PV6s9urqqoMs2fPFvbZv3+/2e2MlXxYGJXISRmH061Zs0a4cm2LzZs3A6i90rZs2bJ6twcHB+P1118HAFRVVWHLli3iddrN/Pjjj7h27RqA2qs1/fr1s7jfc889h8TERADAf//7X1RUVAi3MV7yuHDhgnCl+uGHH7Z4ZS0sLAxz584FUHs155tvvjG7nbFyvNdffx15eXkIDQ1tdF/GSz5lZWXIyMgAAHTp0sXu4xkref3lL39BTU0NFAoF3n33XbRp06bePo899pjwufX1119Do9EItzFezmXDhg3C59ucOXPqfRdhvORz7NgxYXv58uVmozwAwNPTEy+//LLw85EjR8xuZ6zkwyQIkRPaunUrxo0bh6NHjwIA4uPjhTc9azIzM4UPwuHDhyM4ONjifn369EH79u0BAAcOHBCn027o9OnTwvbIkSMb3E+hUGDQoEEAgOrqaty4cQMA4yWn6upqPPjgg2jbti1GjRrV4H4dOnQQtm/duiVsM1aOt2/fPhw4cAAeHh5YsWKF1X0ZL3lduXIFhl9LzFmqe2QNYyWvwsJCHD9+HEBtQrhHjx4N7jt37lxMnToVc+bMEZL3jJdzuXLlilBfp23btvXqWTFe8srLywMABAYGIiwszOI+xucZAO7evStsM1byYhKEyAmdP38eWq0Wnp6eeOaZZ7Bjxw60bdu20ePOnj0rbPfv39/qvsnJyQCA7Oxs4Qoe2adHjx6YN28eJk2aZPahZonBpAZ1VVUVAMZLTr1798bGjRtx6NAhjB8/vsH9srOzhe3IyEhhm7FyrLy8PKxevRoAMHv2bNx3331W92e85GX84g4AXbt2tetYxkpeKSkp0Gq1AIBx48ZZ3XfixIl44403sGTJEmH0FePlXN544w2hsO2KFSvg7e1tdjvjJS/j94aSkhKzBIcp44UwAIiOjha2GSt5MQlC5IS8vLwwZcoUHDhwAEuWLIGXl5dNxxmnZgBAXFyc1X1Nh79evXq1Sf10d/3798fixYuxdu1asw8yS06dOiVst2rVCgDj5WwKCgrwz3/+EwDg6+uL4cOHC7cxVo61cuVKFBYWon379li0aFGj+zNe8rp8+TIAICAgADqdDmvWrMHYsWPRo0cP9O7dG5MmTcKGDRtQUlJS71jGSl5XrlwRtk1Hgej1euTm5uLGjRsoLy9v8HjGy3kcPnwYZ86cAQAMGjTI4io+jJe8TEcF//nPf653u06nM1vNbMyYMcI2YyUvrg5D5IRWrlwJDw/7c5S3b98WtmNjY63ua7pCielxJL5jx44JJwmJiYlCwoTxcryqqipkZWXhyJEj2LJlC+7evQuFQoHXXnsNISEhwn6MlePs2rULhw8fhoeHB9asWWNTUpjxkpdxJIhWq8W4ceOEkQZA7Wvs0qVLuHTpEj799FOsX78effv2FW5nrORlPGFSq9WIjIxEXl4e1q9fj/3796O4uBgAoFQq0bdvXyxYsAB9+vQxO57xch7G1X0AYOHChRb3YbzkNW3aNBw5cgSpqanYuXMnbt26halTpyImJgaZmZn4+OOPcfHiRQC1teQeeOAB4VjGSl5MghA5oaYkQAAIX2AAwM/Pz+q+vr6+wnZpaWmT7o8aV1BQgJUrVwo/GwtvAoyXo50/fx6//e1vzX4XHR2NVatWmY0CARgrR8nNzcUf//hHALXTYHr16mXTcYyXfKqrq3H9+nUAgEajQUBAAGbPno1+/fohMDAQ6enp+OKLL5CamorCwkLMnTsX//rXv9CtWzcAjJXcioqKANQWXvzxxx8xb9484XdGOp0OJ0+exKlTp/Dyyy+bLRfOeDmHlJQUYVRPcnIyevbsaXE/xkteXl5e2LRpEz788ENs3rwZJ0+exMmTJ832iYiIwMsvv4wJEyaY/Z6xkhenwxC1INXV1cJ23XmhdZnebnociae8vBzPPvusUGAzOTnZ7EOP8XKsnJycer+7e/cutm/fjgsXLpj9nrFyjBUrVqCkpARxcXF44YUXbD6O8ZLP1atXhZEfcXFx2LVrF1566SUMGTIE9913HyZOnIhPPvkEv/vd7wDUjgx5+eWXodfrATBWcjNOdamqqsK8efNQXFyMmTNn4quvvsL58+dx7NgxLF++HL6+vjAYDHjrrbewb98+4XjGyzkYVxEBgKeffrrB/Rgv+V27dg2XL182WwnQVF5eHvbv3y8kj40YK3kxCULUgpguo1t3Wa66TAt1NnXkCTWstLQUTz/9NH788UcAtSMM3nnnHbPnmvFyrLi4OHzwwQf497//jY0bN2LMmDHQ6XQ4evQonnjiCWEFBYCxcoR///vf+Pbbb4VpMI19KTTFeMmnU6dOOHToEDZv3owPP/wQrVu3trjfkiVLhJE8169fF5agZqzkVVlZCaB2GfCioiK88cYbWLFiBeLj4+Hp6Yno6Gg89dRT2Lx5M9RqNQBg7dq1QkFvxsvxrl+/Lnw+JSUlWawFYsR4yeubb77BjBkzcOjQIQQFBWHVqlU4fvw4zp8/j4MHD2L+/PlQq9X4+uuvMX36dLMLLoyVvPisEbUgpsPjNBqN1X2NX2iA2nXLSTx37tzBzJkz8cMPPwAAwsPD8c9//hMRERFm+zFejpWUlIRhw4ahR48eePDBB7Fu3Tq8+eabAGpPFF566SWUlZUBYKzklpOTg7Vr1wIAnnzySfTu3duu4xkv+SiVSrRt2xYDBw5sMAEC1H6pf+yxx4SfU1JSADBWcjNNJg4YMABTpkyxuF/Pnj2F6YK5ubmMlxPZu3evcBI8efJkq/syXvK5c+cOFi9eDI1Gg5CQEGzfvh3Tpk1DZGQkPD09ERcXh4ULF+If//gH1Go1ioqKsGDBAuF5Z6zkxSQIUQtiOofQeLWnIabD9IKCgiTrk7u5cuUKpkyZIhRCjY6OxpYtW9CxY8d6+zJezufRRx/Fww8/DKB27vzBgwcBMFZyMhgM+P3vf4+ysjLExcXZtBpMXYyXc+rcubOwbVyOmrGSl7+/v7D90EMPWd13xIgRwrZxVCPj5XiHDh0CUJtYHD16tNV9GS/57Nq1S3gOFy5ciLZt21rcr1+/fpgxYwaA2oT/kSNHADBWcmMShKgFMS69CkCoQ9EQ09ujoqIk65M7OXbsGKZNmyZU6u7QoQP+9a9/WUyAAIyXszI9MTAmsxgr+Wzfvl246jxr1iykp6fj8uXLZv9N51KXlJQIv7979y4AxstZWZrHzljJy3REYmNLu5uuUFFYWAiA8XK0mzdvCiv89OnTp9HnlfGSz08//SRsmy6Va8moUaOEbWOCkbGSF1eHIWpBEhIShO2MjIwGq4UDQGZmprAdHx8vZbfcws6dO7FixQrU1NQAAHr37o33338fwcHBDR7DeMmntLQUGRkZyMrKwkMPPWR1vq1pzIwFHxkr+Ri/EALA6tWrG93/2LFjOHbsGADg+eefx4IFCxgvGV26dAlZWVnIz8/HxIkT4ePj0+C++fn5wnZ4eDgAvrbklpSUhP/+978AzFejsMS04GJgYCAAxsvRjKMGADQ6CgRgvORkOjojICDA6r5hYWHCtnF1F8ZKXhwJQtSC9OzZUzi5O3PmjNV9U1NTAdSuNW5tHjc1bseOHXjllVeEBMjo0aPx8ccfW02AAIyXnFavXo3Jkydj4cKFwrKCDcnIyBC2jVdKGSvXwnjJZ9OmTViwYAFWrVpllsCy5OzZs8J2jx49ADBWcjM9sTKNhyXGEQcAhOeb8XKs06dPC9v9+vVrdH/GSz4hISHCtun3CEtyc3OFbWNChLGSF5MgRC1ITEyM8AXn4MGDQlHHus6cOYP09HQAEOofUNOcPn0aK1asEIqUPfHEE1i3bp1NhaoYL/n07dtX2P7Pf/7T4H56vd7s9sGDBwNgrOS0du1apKWlWf1vejV0/Pjxwu8XLFgAgPGSU//+/YXtXbt2NbhfZWUltm3bBgBQq9XCtDPGSl4DBgwQpsTs378feXl5De67c+dOALXFb431QRgvxzImGgMCAhqcamuK8ZJPcnKysP3ll19a3XfPnj3CtvH7CWMlLyZBiFqYmTNnAqgt6rhy5Uro9Xqz24uLi7Fy5UoAtV9En3jiCdn72FKUlZVh6dKl0Ol0AGqLar722muNLm1mivGSx5gxY4SrNNu3b8f3339fbx+DwYA333wTFy9eBAAMGjQI3bt3F25nrFwL4yWPMWPGCKPedu/ejcOHD9fbR6vVYtmyZUIx1OnTp5vVpmCs5KNUKjF37lwAtZ9hL730EsrLy+vt9/HHHwvvk6NGjUJkZKRwG+PlGLm5uUJtlu7du9v8XYPxksfYsWMRGhoKoPb1c/ToUYv77dmzB1988QWA2tpxgwYNEm5jrOTDmiBELczYsWOxY8cOnDhxAnv37sXt27cxa9YsREVFIS0tDR988IHwRXTBggVo06aNg3vsuj799FOhOFVERASmTp0qFNK0JiYmRjhpYLzk4e/vj9dffx2LFi2CVqvFnDlzMGXKFAwdOhTh4eFIT0/Htm3bcO7cOQC102CMy+UaMVauhfGSR0BAAFauXIklS5ZAr9dj4cKFmDJlCh566CH4+/vj559/xpYtW/Dzzz8DqJ0Gs3jxYrM2GCt5Pfnkk/jmm29w8uRJfP/995g0aRKefPJJdO7cGaWlpdi9ezf27t0LAAgNDcUf/vAHs+MZL8e4efOmsN3QyiOWMF7y8Pf3xx//+EfMnz8fOp0Ozz77LMaOHYvRo0cjMjISd+7cwf79+/HVV1/BYDDA29sba9euhUp173ScsZKPwmAcw01ETu3UqVOYNWsWAGDevHn1vkSaKisrw7x588zmjtY1e/ZsLF++3K5RC2Ru2LBhjVbwtmTNmjWYPHmy8DPjJZ+9e/fitddeMytgVle3bt3w3nvvWZxny1g5h6ysLKH6/vjx4/H2229b3I/xks+uXbuwatUqq0s7Dh48GOvWrROKbJpirOSl0WiwbNkyHDhwoMF94uLisHHjRouFFxkv+e3atQvLli0DACxevBjz5s2z+VjGSz6HDh3C8uXLG5zOAtReOFu3bp3ZVF0jxkoeHAlC1AL5+/tjy5Yt2LVrF3bv3o0rV66gtLQUISEh6NWrF2bMmGE2j5vsV1BQ0KQEiCWMl3zGjRuHvn37YuvWrfj222+RkZGB6upqhISEoEePHhg7diweeeQReHhYni3KWLkWxks+EydORL9+/bB161acOHFCeG2Fh4ejR48e+M1vfmN12UjGSl7e3t547733kJKSgi+++AI//PAD8vLyEBAQgHbt2mHcuHGYOHEi/Pz8LB7PeMnPdNpSY8sb18V4yWfUqFG4//778dlnn+Hbb79Feno6ysvLERAQgISEBIwYMQJTp07la8vBOBKEiIiIiIiIiNwCC6MSERERERERkVtgEoSIiIiIiIiI3AKTIERERERERETkFpgEISIiIiIiIiK3wCQIEREREREREbkFJkGIiIiIiIiIyC0wCUJEREREREREboFJECIiIiIiIiJyC0yCEBEREREREZFbYBKEiIiIiIiIiNwCkyBERERERERE5BaYBCEiIiIiIiIit8AkCBERERERERG5BSZBiIiIiIiIiMgtMAlCRERERERERG6BSRAiIiIiIiIicgtMghAREZFD1dTUOLoLDsfngIiISB4qR3eAiIiI3JNOp8Mnn3yCzMxMvPbaa47ujkNoNBq8//778PHxwbx580Rr96effsK0adMQHByMgwcPwt/fX7ht5syZSE1NbXLba9asweTJkwEAer0ekydPxuXLl/Huu+9i9OjRze47ERGRlDgShIiIiGSXm5uLRx99FGvWrEF5ebmju+MQaWlpGDduHP72t79Bq9WK1m5FRQWWLl2KmpoaLF682CwBIjYPDw+8+uqrAIBVq1YhNzdXsvsiIiISA0eCEBERkexu3ryJy5cvO7obDnXx4kVkZmaK3u67776LmzdvIikpSRix0ZAxY8agW7dudrXfvXt3s5+Tk5MxcuRIHDlyBCtXrsTf/vY3u/tMREQkFyZBiIiIiFqIK1euYOvWrQCAF198ER4e1gf9DhkypNFEiS2WLFmCo0eP4ujRo/j6668xYsSIZrdJREQkBU6HISIiImoh/vSnP6GmpgZdu3bF0KFDZbvf+Ph4PPzwwwCAt956CzqdTrb7JiIisgeTIEREREQtwJkzZ/Ddd98BAGbMmCH7/U+fPh1A7VSn3bt3y37/REREtmAShIiIiGSzY8cOJCUlYdasWcLvdu7ciaSkJCQlJWH58uWS9+HEiRNYunQpRo0ahZ49e6JXr14YNWoUli1bhuPHj1s9dv369UJfd+zYYXVf42NNSkrC+vXr67XxyiuvCL/bsGGDxX3tsWnTJgCAn5+fQ1ZpSU5ORlxcnFlfiIiInA2TIEREROQWcnJyMHPmTMydOxe7d+9GRkYGKisrUVFRgYyMDOzatQtPP/00nnrqKRQUFDi6u3bJzs7Gt99+CwAYMWIEfH19HdKPsWPHAgCuX7+OU6dOOaQPRERE1rAwKhEREcmme/fuePnll5GRkYFt27YBALp164YxY8YAABISEiS539zcXMyYMQM5OTkAAJVKhSFDhqBLly5QKBS4ePEijh8/jpqaGqSkpGDKlCn4/PPPERYWJnpfBg0aBF9fX1y4cAH79u0Tfjdo0CAAQK9evexu88svv4RerwcAPPDAA+J11k6DBw/Gxo0bAQC7du1Cv379HNYXIiIiS5gEISIiItkkJCQgISEBp06dEpIgCQkJmDt3rqT3u2TJEiEBEhcXh40bNyI+Pt5sn7S0NMyfPx+ZmZnIysrCSy+9hM2bN4vel969e6N3797YsWOHkATp1atXs56DI0eOCNsDBw5sdh+b6r777oOfnx/Ky8tx9OhR6HQ6KJVKh/WHiIioLiZBiIiIqEU7fvw4zpw5AwAIDAzERx99hJiYmHr7JSUlYfPmzZg4cSLKysqQkpKClJQUhyYVbFFWVoZLly4BAMLDwxEeHm7zscePH0dhYaFN+yYkJDQ6ykSpVCIxMRHnzp1DYWEhrl69ik6dOtncHyIiIqkxCUJEREQt2t69e4XtWbNmWUyAGLVp0wYzZ87E+++/DwD44osvnD4Jcv78eWEqTGJiol3H7tu3TxiN0phJkybZNNXGmAQBgP/9739MghARkVNhYVQiIiJq0U6ePClsP/TQQ43ub7qySmpqqiR9ElN6erqw3aFDBwf2pH4fbt686biOEBERWcCRIERERNRi1dTU4Pbt2wAAtVpdrw6IJQkJCVCr1dBqtbhz5w6qq6vh6ekpdVeb7NatW8J2UFCQXceuWbMGkydPFrU/wcHBwraxDgsREZGz4EgQIiIiarGKioqEbX9/f5uKdHp4eCAgIMBiG86otLRU2Dbtt6P4+/sL22VlZQ7sCRERUX1MghAREVGLZTAYhG2FQmHzccYaG0BtUqS59y2l6upqYdvX11eW+7TGz89P2DbtGxERkTNgEoSIiIhaLNPpIaWlpdDpdI0eo9VqbRpd0ViSo6qqysZeNo+3t7ew7QxJB9PH7eXl5cCeEBER1cckCBEREbVYnp6ewmowWq0W165da/SYq1evCsmSyMhIsxN509EkjSUc7t6925Qu2810+kl5ebks92lNRUWFsG3aNyIiImfAJAgRERHJzp6pKc11//33C9sHDx5sdH/TfXr37m12m4+Pj7BdUFBgtZ3z589bvV2s56BVq1bCtrEIrCOZFmpt3bq1A3tCRERUH5MgREREJDvTOhu2TFFpjkmTJgnbn3zyidlJel3Z2dn49NNPhZ/HjRtndntkZKSwnZKS0mA7Fy9etHo7IN5z0L59e2E7Kyurye2IxbQPpn0jIiJyBkyCEBERkexMp0lkZ2dLel+DBw8WRnSUlJRg9uzZFqfFXL16FU899ZSwosmAAQMwcuRIs3369+8vjOA4c+YMtm/fXq+d8+fPY/78+Y0mNsR6Drp16waVSgUAuHz5cpPbEculS5eE7Z49ezquI0RERBaoHN0BIiIicj+tWrWCQqGAwWDA2bNnsXTpUiQkJCAyMhITJ04U/f7WrVuH3/72t7h79y5u3ryJ3/zmNxgyZAi6du0KhUKBCxcu4Pjx46ipqQEAREdH409/+lO9lWEiIiIwbtw47NmzBwDwhz/8AXv27BGm3Pz000/4/vvvYTAYMHr0aOzfv7/BPplOFdmzZw8CAgIQFRWFhIQEjBgxwubH5uvri+7du+PcuXPIy8tDdna22RQZOVVXV+PKlSsAap+rjh07OqQfREREDWEShIiIiGQXEBCAsWPHYu/evQCA3bt3AwCSkpIkSYJER0fjP//5DxYtWoRz586hpqYGR48exdGjR+vt+8ADD+Ctt95CaGioxbZWrVqF3NxcpKamAgBOnz6N06dPm+0zdepUvPDCC1aTIImJiejVqxfOnTsHg8GArVu3AgBGjBhhVxIEAEaOHIlz584BAL777jtMnTrVruPFcvbsWWg0GgDAqFGjHNIHIiIiazgdhoiIiBxizZo1ePbZZ9GuXTt4eXkhKCgIKpWq0aVnmyo6Ohrbtm3D+++/j/Hjx6N169bw8fGBWq1G69atMWHCBHz44YfYtGlTgwkQoHYay5YtW/DOO+9g6NChCAsLg1qtRkxMDEaPHo2PPvoIb7zxRr1RJHUpFAps2rQJTzzxBGJjY6FWqxEaGtqkxz9hwgTh/iwlduTyzTffCNsTJkxwWD+IiIgaojBI9U2DiIiIiGTz3HPP4ciRI1Cr1UhJSUFgYKCs96/X6zF06FDcuXMHXbp0wc6dO2W9fyIiIltwJAgRERFRCzBnzhwAgFarFWqWyOn48eO4c+cOAOCpp56S/f6JiIhswSQIERERUQvQp08fDBw4EADw6aefSjatqCGffPIJAKBDhw4YO3asrPdNRERkKyZBiIiIiFqIF198EQqFAjdu3MCRI0dku9+0tDScOHECALBkyRIolUrZ7puIiMgeXB2GiIiInMatW7ewb98+0dp77LHH4O/vL1p7zq5bt2547LHHsG3bNqxfvx4jR46EQqGQ/H7/8pe/wGAwYMiQIVwVhoiInBoLoxIREZHTOHXqFGbNmiVae0eOHEHr1q1Fa88VlJaWYvz48bh16xbeeustSZYcNnX27FlMnz4dfn5+2L17t9s930RE5Fo4HYaIiIioBQkICMCf//xnqFQqvP322ygrK5PsvvR6Pf7v//4PALB69WomQIiIyOlxJAgRERERERERuQWOBCEiIiIiIiIit8AkCBERERERERG5BSZBiIiIiIiIiMgtMAlCRERERERERG6BSRAiIiIiIiIicgtMghARERERERGRW2AShIiIiIiIiIjcApMgREREREREROQWmAQhIiIiIiIiIrfAJAgRERERERERuQUmQYiIiIiIiIjILTAJQkRERERERERugUkQIiIiIiIiInILTIIQERERERERkVtgEoSIiIiIiIiI3AKTIERERERERETkFpgEISIiIiIiIiK3wCQIEREREREREbmF/wfqgnPsHt+7owAAAABJRU5ErkJggg==\n", "image/svg+xml": [ "\n", "\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2021-07-29T17:01:57.786435\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.3.4, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n" ], "text/plain": [ "
" ] }, "metadata": { "image/png": { "height": 370, "width": 544 } }, "output_type": "display_data" } ], "source": [ "df_heating = df[df['t_out'] < 60]\n", "df_cooling = df[df['t_out'] > 70]\n", "df_off = df[(df['t_out'] >= 60) & (df['t_out'] <= 70)]\n", "fig, ax = plt.subplots()\n", "ax.scatter(df_heating['t_out'], df_heating['hvac'], label='Heating')\n", "ax.scatter(df_cooling['t_out'], df_cooling['hvac'], label='Cooling')\n", "ax.scatter(df_off['t_out'], df_off['hvac'], label='Off')\n", "ax.set_xlabel('t_out (F)')\n", "ax.set_ylabel('hvac (kWh)')\n", "plt.legend(loc='best');" ] }, { "cell_type": "markdown", "id": "b16e9ea3", "metadata": {}, "source": [ "The covariance and the correlation will allow us to characterize the relationship between $X=$`t_out` and $Y=$`hvac` in each one of these regions with a single number.\n", "Depending on the sign of this number (positive, negative, or zero), we can say how the relationship between $X$ and $Y$ goes.\n", "In these three regions we find:\n", "\n", "+ Heating region (`t_out` < 60 F): In this regime, increasing $X=$`t_out` decreases energy consumption $Y=$`hvac` because you use less heating. In the mathematical jargon, we say that $X$ and $Y$ are *negatively correlated*.\n", "+ Cooling region (`t_out` > 70 F): In this regime, increase $X=$`t_out` increases energy consumption $Y=$`hvac` because you use more cooling. In the mathematical jargon, we say that $X$ adn $Y$ are *positively correlated*.\n", "+ Off region (60 F <= `t_out` <= 70 F): In this regime, the $X=$`t_out` does not affect energy consumption because the HVAC is most likely off. In the mathematical jargon, we say that $X$ and $Y$ are *uncorrelated*.\n", "\n", "Okay, this is good.\n", "We are going to do two things next.\n", "I will first give you the mathematical definition of covariance and correlation and second I will show you how to estimate them from the data we have.\n", "Let's go.\n", "\n", "## Mathematical definition of covariance\n", "\n", "Let $p(x,y)$ be the joint PDF of the random variables $X$ and $Y$.\n", "We may or we may not know this, but it certainly exists.\n", "Now, let\n", "\n", "$$\n", "\\mu_X = \\mathbf{E}[X],\n", "$$\n", "\n", "be the mean of $X$ and\n", "\n", "$$\n", "\\mu_Y = \\mathbf{E}[Y],\n", "$$\n", "\n", "be the mean of $Y$.\n", "The covariance of $X$ and $Y$ is defined to be:\n", "\n", "$$\n", "\\mathbf{C}[X, Y] := \\mathbf{E}\\left[(X-\\mu_X)(Y-\\mu_Y)\\right].\n", "$$\n", "\n", "So, it is the expectation of the product $(X-\\mu_X)(Y-\\mu_Y)$.\n", "Why is this a good definition of how $X$ and $Y$ vary together?\n", "To develop your intuition about it, let's look at what the covariance turns out to be in three specific cases:\n", "\n", "### Case 1: If $X$ and $Y$ are independent, then the covariance is zero \n", "Let's assume that $X$ and $Y$ are independent.\n", "Then, their joint PDF would factorize:\n", "\n", "$$\n", "p(x,y) = p(x)p(y).\n", "$$\n", "\n", "This can be exploited to show that $\\mathbf{C}[X,Y]$ would be exactly zero.\n", "Here it is:\n", "\n", "$$\n", "\\begin{split}\n", "\\mathbf{C}[X,Y] &= \\mathbf{E}\\left[(X-\\mu_X)(Y-\\mu_Y)\\right]\\\\\n", "&= \\int (x-\\mu_X)(y-\\mu_Y)p(x,y)dxdy\\\\\n", "&= \\int (x-\\mu_X)(y-\\mu_Y)p(x)p(y)dxdy\\;\\text{(independence)}\\\\\n", "&= \\int (x-\\mu_X)p(x)dx\\int(y-\\mu_Y)p(y)dy\\;\\text{(calculus)}\\\\\n", "&= \\mathbf{E}[X-\\mu_X]\\cdot\\mathbf{E}[Y-\\mu_Y]\\;\\text{(definition of expectation)}\\\\\n", "&= 0\\cdot 0\\\\\n", "&= 0\n", "\\end{split}\n", "$$\n", "\n", "### Case 2: If $Y=aX+b$ for some positive constant $a$, then the covariance is positive\n", "\n", "Let's assume that there is a very simple relationship between $X$ and $Y$:\n", "\n", "$$\n", "Y = a X+b,\n", "$$\n", "\n", "for some $a$ positive, and an arbitrary $b$.\n", "This is the simplest way in which an increase in $X$ would yield and increase in $Y$.\n", "Let's see what covariance we get in this case.\n", "Notice that the mean of $Y$ is now:\n", "\n", "$$\n", "\\mu_Y = \\mathbf{E}[Y] = \\mathbf{E}[aX+b] = a\\mathbf{E}[X]+b = a\\mu_X+b.\n", "$$\n", "\n", "So, the covariance is:\n", "\n", "$$\n", "\\begin{split}\n", "\\mathbf{C}[X,Y] &= \\mathbf{E}\\left[(X-\\mu_X)(Y-\\mu_Y)\\right]\\\\\n", "&= \\mathbf{E}\\left[(X-\\mu_X)(aX+b-a\\mu_X-b)\\right]\\\\\n", "&= \\mathbf{E}\\left[(X-\\mu_X)a(X-\\mu_X)\\right]\\\\\n", "&= \\mathbf{E}\\left[a(X-\\mu_X)^2\\right]\\\\\n", "&= a\\mathbf{E}\\left[(X-\\mu_X)^2\\right]\\\\\n", "&= a\\mathbf{V}\\left[X\\right],\n", "\\end{split}\n", "$$\n", "\n", "which is, of course, positive because both $a$ and the variance of $X$ are positive.\n", "\n", "### Case 3: If $Y=-aX+b$ for some positive constant $a$, then the covariance is negative\n", "\n", "Let's assume that there is a very simple relationship between $X$ and $Y$:\n", "\n", "$$\n", "Y = -a X+b,\n", "$$\n", "\n", "for some $a$ positive, and an arbitrary $b$.\n", "This is the simplest way in which an increase in $X$ would yield and decrease in $Y$.\n", "In exactly the same way as before, we can show that:\n", "\n", "$$\n", "\\mathbf{C}[X,Y] = -a\\mathbf{V}[X],\n", "$$\n", "\n", "which is a negative number.\n", "\n", "## Empirical estimation of the covariance\n", "\n", "Alright, so the covariance does have the intuitive meaning that we want.\n", "But, how can we find it if we do not know the joint PDF $p(x,y)$.\n", "We will show how you can estimate it from samples of $X$ and $Y$?\n", "So, let's say that we have $N$ measurements of $X$ and $Y$, say $(x_i, y_i)$ for $i=1,\\dots,N$.\n", "We need the means, which we already know how to estimate:\n", "\n", "$$\n", "\\hat{\\mu}_X = \\frac{1}{N}\\sum_{i=1}^Nx_i,\n", "$$\n", "\n", "and\n", "\n", "$$\n", "\\hat{\\mu}_Y = \\frac{1}{N}\\sum_{i=1}^Ny_i,\n", "$$\n", "\n", "Okay, we need to estimate one more expectation.\n", "Let's do it:\n", "\n", "$$\n", "\\begin{split}\n", "\\mathbf{C}[X,Y] &= \\mathbf{E}\\left[(X-\\mu_X)(Y-\\mu_Y)\\right]\\\\\n", "&\\approx \\mathbf{E}\\left[(X-\\hat{\\mu}_X)(Y-\\hat{\\mu}_Y)\\right]\\;\\text{(replacing means with estimates)}\\\\\n", "&\\approx \\frac{1}{N}\\sum_{i=1}^N(x_i-\\hat{\\mu}_X)(y_i-\\hat{\\mu}_Y)\\;\\text{(sampling estimate of expectation)}.\n", "\\end{split}\n", "$$\n", "\n", "So, here is our estimate of the covariance:\n", "\n", "$$\n", "\\hat{\\sigma}_{X,Y} = \\frac{1}{N}\\sum_{i=1}^N(x_i-\\hat{\\mu}_X)(y_i-\\hat{\\mu}_Y).\n", "$$\n", "\n", "```{note}\n", "The standard estimate of covariance differs a bit from what I have above.\n", "It is usually estimated by:\n", "\n", "$$\n", "\\tilde{\\sigma}_{X,Y} = \\frac{1}{N-1}\\sum_{i=1}^N(x_i-\\hat{\\mu}_X)(y_i-\\hat{\\mu}_Y).\n", "$$\n", "\n", "This is a so-called *unbiased estimator*.\n", "However, if $N$ is big enough the difference is negligible and we don't have to worry about it.\n", "```\n", "\n", "## Example: Covariance between `t_out` and `hvac` during heating, cooling, and off\n", "\n", "Let's now calculate the estimate we developed for the covariance in the smart buildings dataset.\n", "In particular, we are going to estimate the covariance between $X=$`t_out` and $Y=$`hvac` for the three regions considered.\n", "\n", "Fortunately, we do not have to calculate it by hand.\n", "We can use built-in functionality of [`np.cov`](https://numpy.org/doc/stable/reference/generated/numpy.cov.html).\n", "Here is how.\n", "Let's do first cooling." ] }, { "cell_type": "code", "execution_count": 12, "id": "93e0c157", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[[ 9.74568849 36.85230047]\n", " [ 36.85230047 2299.42112855]]\n" ] } ], "source": [ "C = np.cov(df_cooling['t_out'], df_cooling['hvac'])\n", "print(C)" ] }, { "cell_type": "markdown", "id": "994a0d89", "metadata": {}, "source": [ "Let me explain to you what `np.cov()` returns in our case.\n", "First, you notice we have returns a 2 x 2 matrix $C$.\n", "The diagonal of that matrix include the variances of the two datasets.\n", "So, here `C[0,0]` is the variance of `df_cooling['t_out']`.\n", "Check this out:" ] }, { "cell_type": "code", "execution_count": 14, "id": "4c108588", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Variance of df_cooling['t_out'] = 9.75\n", "Compare to C[0, 0] = 9.75\n" ] } ], "source": [ "print(\"Variance of df_cooling['t_out'] = {0:1.2f}\".format(df_cooling['t_out'].var()))\n", "print('Compare to C[0, 0] = {0:1.2f}'.format(C[0, 0]))" ] }, { "cell_type": "markdown", "id": "b75b4eb2", "metadata": {}, "source": [ "Similarly, `C[1,1]` is the variance of `df_cooling['hvac']`:" ] }, { "cell_type": "code", "execution_count": 15, "id": "be010cdd", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Variance of df_cooling['hvac'] = 2299.42\n", "Compare to C[1, 1] = 2299.42\n" ] } ], "source": [ "print(\"Variance of df_cooling['hvac'] = {0:1.2f}\".format(df_cooling['hvac'].var()))\n", "print('Compare to C[1, 1] = {0:1.2f}'.format(C[1, 1]))" ] }, { "cell_type": "markdown", "id": "4d45a86c", "metadata": {}, "source": [ "Okay.\n", "Now `C[0, 1]` is the covariance between the first input (0 = `t_out`) and the second input (1 = `hvac`).\n", "Here it is:" ] }, { "cell_type": "code", "execution_count": 18, "id": "cd605373", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "C['t_out', 'hvac'] = 36.85\n" ] } ], "source": [ "print(\"C['t_out', 'hvac'|cooling] = {0:1.2f}\".format(C[0, 1]))" ] }, { "cell_type": "markdown", "id": "958f36a3", "metadata": {}, "source": [ "This is positive for cooling as we expected.\n", "Increasing `t_out` results in increasing `hvac`.\n", "\n", "But what is `C[1, 0]`. Well, this is the covariance between the second input (1 = `hvac`) and the first input (0 = `t_out`):" ] }, { "cell_type": "code", "execution_count": 19, "id": "24d77f22", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "C['hvac', 't_out'|cooling] = 36.85\n" ] } ], "source": [ "print(\"C['hvac', 't_out'|cooling] = {0:1.2f}\".format(C[1, 0]))" ] }, { "cell_type": "markdown", "id": "f1afd282", "metadata": {}, "source": [ "This is exactly the same as `C[0, 1]`. Of course, this is not an accident.\n", "The covariance between two random variables is a symmetric operator, i.e.,\n", "\n", "$$\n", "\\mathbf{C}[X, Y] = \\mathbf{C}[Y,X].\n", "$$\n", "\n", "The proof is trivial. Just look at the definition of covariance.\n", "\n", "Alright, let's now look at the heating covariance:" ] }, { "cell_type": "code", "execution_count": 22, "id": "f8722e35", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[[ 105.27235776 -525.43752907]\n", " [ -525.43752907 12967.67912181]]\n" ] } ], "source": [ "C = np.cov(df_heating['t_out'], df_heating['hvac'])\n", "print(C)" ] }, { "cell_type": "code", "execution_count": 23, "id": "c2683ad5", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "C['hvac', 't_out'|heating] = -525.44\n" ] } ], "source": [ "print(\"C['hvac', 't_out'|heating] = {0:1.2f}\".format(C[1, 0]))" ] }, { "cell_type": "markdown", "id": "bce8021d", "metadata": {}, "source": [ "It is a nice negative number.\n", "Again, this is compatible with our intuition.\n", "Negative means that if `t_out` is increased, `hvac` decreases.\n", "That's exactly what should be happening during heating.\n", "\n", "Let's do the off regime:" ] }, { "cell_type": "code", "execution_count": 24, "id": "174f53c7", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[[ 8.08975479 -2.65681839]\n", " [ -2.65681839 1306.35076875]]\n" ] } ], "source": [ "C = np.cov(df_off['t_out'], df_off['hvac'])\n", "print(C)" ] }, { "cell_type": "code", "execution_count": 25, "id": "c809b2e0", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "C['hvac', 't_out'|heating] = -2.66\n" ] } ], "source": [ "print(\"C['hvac', 't_out'|heating] = {0:1.2f}\".format(C[1, 0]))" ] }, { "cell_type": "markdown", "id": "37344cd4", "metadata": {}, "source": [ "This is smaller in absolute value than any of the other covariance.\n", "But it is still negative...\n", "Is this -2.66 negligible? Or is it big?\n", "How do we know?\n", "\n", "Well, that is what the correlation coefficient is going to help us decide..." ] } ], "metadata": { "celltoolbar": "Tags", "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.8" } }, "nbformat": 4, "nbformat_minor": 5 }