Two uncorrelated random variables are not necessarily independent#
We have seen that if two random variables \(X\) and \(Y\) are independent, then their covariance is zero,
and therefore their correlation coefficient is also zero:
Does the reverse hold? Namely, if you find that the correlation between two random variables is zero, does this imply that they are independent? The answer to this question is a loud NO. We will show that it does not hold through a counter example.
Take these two independent random variables:
and
Then define this new random variable \(Y\) by:
Since there is a functional relationship between \(X\) and \(Y\), they are obviously not independent. But let’s generate some data from them and estimate the correlation:
Show code cell source Hide code cell source
MAKE_BOOK_FIGURES=True
import matplotlib as mpl
import matplotlib.pyplot as plt
%matplotlib inline
import matplotlib_inline
matplotlib_inline.backend_inline.set_matplotlib_formats('svg')
import seaborn as sns
sns.set_context("paper")
sns.set_style("ticks")
def set_book_style():
plt.style.use('seaborn-v0_8-white')
sns.set_style("ticks")
sns.set_palette("deep")
mpl.rcParams.update({
# Font settings
'font.family': 'serif', # For academic publishing
'font.size': 8, # As requested, 10pt font
'axes.labelsize': 8,
'axes.titlesize': 8,
'xtick.labelsize': 7, # Slightly smaller for better readability
'ytick.labelsize': 7,
'legend.fontsize': 7,
# Line and marker settings for consistency
'axes.linewidth': 0.5,
'grid.linewidth': 0.5,
'lines.linewidth': 1.0,
'lines.markersize': 4,
# Layout to prevent clipped labels
'figure.constrained_layout.use': True,
# Default DPI (will override when saving)
'figure.dpi': 600,
'savefig.dpi': 600,
# Despine - remove top and right spines
'axes.spines.top': False,
'axes.spines.right': False,
# Remove legend frame
'legend.frameon': False,
# Additional trim settings
'figure.autolayout': True, # Alternative to constrained_layout
'savefig.bbox': 'tight', # Trim when saving
'savefig.pad_inches': 0.1 # Small padding to ensure nothing gets cut off
})
def save_for_book(fig, filename, is_vector=True, **kwargs):
"""
Save a figure with book-optimized settings.
Parameters:
-----------
fig : matplotlib figure
The figure to save
filename : str
Filename without extension
is_vector : bool
If True, saves as vector at 1000 dpi. If False, saves as raster at 600 dpi.
**kwargs : dict
Additional kwargs to pass to savefig
"""
# Set appropriate DPI and format based on figure type
if is_vector:
dpi = 1000
ext = '.pdf'
else:
dpi = 600
ext = '.tif'
# Save the figure with book settings
fig.savefig(f"{filename}{ext}", dpi=dpi, **kwargs)
def make_full_width_fig():
return plt.subplots(figsize=(4.7, 2.9), constrained_layout=True)
def make_half_width_fig():
return plt.subplots(figsize=(2.35, 1.45), constrained_layout=True)
if MAKE_BOOK_FIGURES:
set_book_style()
make_full_width_fig = make_full_width_fig if MAKE_BOOK_FIGURES else lambda: plt.subplots()
make_half_width_fig = make_half_width_fig if MAKE_BOOK_FIGURES else lambda: plt.subplots()
import numpy as np
import scipy.stats as st
xdata = np.random.randn(10000)
zdata = np.random.randn(10000)
ydata = xdata ** 2 + 0.2 * zdata
It’s instructive to look at the scatter plot:
Show code cell source Hide code cell source
fig, ax = make_full_width_fig()
ax.scatter(xdata, ydata)
ax.set_xlabel('$x$')
ax.set_ylabel('$y$')
save_for_book(fig, 'ch14.fig3')
Well, it’s obvious that they are not independent. Let’s see what the correlation coefficient is:
rho = np.corrcoef(xdata, ydata)
print(f"rho(X, Y) = {rho[0, 1]:1.2f}")
rho(X, Y) = -0.01
Very close to zero. So, \(X\) and \(Y\) are uncorrelated… Rememeber this please! Do the scatter plots and use your common sense. Do not just rely on a number to make decisions.
After you see the scatter plot like this, you get suspicous. You start thinking that there may be a correlation between the square of \(X\) and \(Y\). Let’s estimate the correlation of \(X^2\) and \(Y\) to see what it turns out to be:
rho = np.corrcoef(xdata ** 2, ydata)
print(f"rho(X^2, Y) = {rho[0, 1]:1.2f}")
rho(X^2, Y) = 0.99
Almost one! (It is actually exactly one).